
 ASSIGNMENT 8

 Question - 1

Imagine you are a cybersecurity analyst working for a large
multinational corporation. One morning, your team receives
an urgent report about a potential security breach in the
company's network. The IT department has noticed unusual
network activity originating from a particular IP address.
Your team has been tasked with investigating this incident to
determine if it poses a threat to the organization's network
security.

Assignment Question:

1. Using the Python library Scapy, analyze the network
packets associated with the suspicious IP address provided.
Expected Procedure:

1. A detailed explanation of how Scapy can be utilized to
capture and dissect network packets.

2. A step-by-step breakdown of the process you followed to
capture and analyze the network traffic.

3. Identification and interpretation of any suspicious or
anomalous network behavior observed in the captured
packets.

4. Recommendations for mitigating the identified security
risks and securing the network against similar threats in the
future.

Expected Code:

1. Write a python code to Network Packet Analysis with
Scapy

As a cybersecurity analyst, it is crucial to act promptly when potential
security breaches are detected. Utilizing Python library Scapy will aid in
examining network packets associated with the suspicious IP address.
Here's how you can utilize Scapy for network packet analysis:

Explanation of Scapy for Network Packet Analysis:

Scapy is a powerful interactive packet manipulation program and library
that allows for detailed network packet analysis.

It facilitates the creation, manipulation, decoding, and sending of packets
through a simple and user-friendly interface. With Scapy, you can
capture, dissect, and analyze network packets to gather valuable
information on network activity.

Step-by-Step Process for Capturing and Analyzing Network Traffic:
Here are the steps to capture and analyze network traffic using Scapy:

• Install Scapy by running pip install scapy in your terminal.
• Use Scapy to sniff network traffic related to the suspicious IP

address by creating a packet filter.

 Capture network packets: Use the `sniff()` function provided by Scapy to

capture network packets. You can specify filters to capture packets from

a specific IP address, port, or protocol.

 For example, to capture packets from the suspicious IP address, you

can use:

 packet_list = sniff(filter="host suspicious_ip_address")

Analyze captured packets:

Analyze the captured packets to determine the source, destination, type,
and payload of each packet.

Look for any unusual patterns or anomalies in the network traffic data.

You can iterate through the captured packets to analyze their content,

extract information, and look for any suspicious behavior. Scapy

provides various packet dissecting functionalities to access different

protocol layers and fields of the packets. For example, you can examine

the source and destination IP addresses and ports, protocols, payloads,

and any additional information.

Python code

for packet in packet_list:

 # Extract source and destination IP addresses

 source_ip = packet[IP].src

 dest_ip = packet[IP].dst

 # Extract protocol information

 protocol = packet[IP].proto

 # Extract payload

 payload = packet[IP].payload

 # Perform further analysis on extracted information

 # Look for any suspicious or anomalous behavior

 # Identify patterns, unusual protocols, large packet sizes, etc.

Identification of Suspicious Network Behavior: In the captured
packets, look for:

• Unusual source or destination IP addresses.
• Unexpected protocols or services being used.
• Suspicious payloads that could indicate malicious intent.
• Time and frequency of network activity.

Recommendations for Mitigating Security Risks: To mitigate
security risks and secure the network:

• Block the suspicious IP address and restrict network access.
• Implement intrusion detection systems and firewalls to monitor and

block unauthorized network traffic.
• Regularly update network security protocols and software to

prevent vulnerabilities.
• Conduct employee cybersecurity training to increase awareness

and prevent social engineering attacks.

Sample Python Code for Network Packet Analysis with Scapy for
network packets associated with the suspicious IP address provided with
using google colab:

Python code:

!pip install scapy

Collecting scapy
 Downloading scapy-2.5.0.tar.gz (1.3 MB)

 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━ 1.3/1.3 MB 15.3 MB/s eta 0:00:00

 Preparing metadata (setup.py) ... done

Building wheels for collected packages: scapy
 Building wheel for scapy (setup.py) ... done
 Created wheel for scapy: filename=scapy-2.5.0-py2.py3-none-any.whl
size=1444327
sha256=1cc1b1843662c4c0c6a34d6b44f684aa8a241064dddccd1fd794f
aa2e6aac3b4
 Stored in directory:
/root/.cache/pip/wheels/82/b7/03/8344d8cf6695624746311bc0d389e9d0
5535ca83c35f90241d
Successfully built scapy
Installing collected packages: scapy

Successfully installed scapy-2.5.0

from scapy.all import*

 def analyze_network_traffic(suspicious_ip):
 packets = sniff(filter="host " + suspicious_ip, count=10)
 # analyze and print information about sniffed packets
 for packet in packets:
 print (packet.summary())
 # Add more packet analysis logic here

suspicious_ip = "192.168.1.1"
analyze_network_traffic (suspicious_ip)

ERROR: Cannot set filter: libpcap is not available. Cannot compile filter !
ERROR:scapy.runtime:Cannot set filter: libpcap is not available. Cannot
compile filter !
Ether / IP / TCP 172.28.0.1:48664 > 172.28.0.12:8080 PA / Raw
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:48664 A
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:48664 PA / Raw
Ether / IP / TCP 172.28.0.1:48664 > 172.28.0.12:8080 A
Ether / IP / TCP 172.28.0.1:48664 > 172.28.0.12:8080 PA / Raw
Ether / IP / TCP 172.28.0.1:48664 > 172.28.0.12:8080 PA / Raw
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:48664 A
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:48664 PA / Raw
Ether / IP / TCP 172.28.0.1:48664 > 172.28.0.12:8080 A
Ether / IP / TCP 172.28.0.1:48664 > 172.28.0.12:8080 PA / Raw

This code snippet demonstrates how to capture and analyze network
packets related to a specific IP address using Scapy.

A python code to Network Packet Analysis with Scapy

!pip install scapy
Collecting scapy
 Downloading scapy-2.5.0.tar.gz (1.3 MB)

 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━ 1.3/1.3 MB 7.2 MB/s eta 0:00:00

 Preparing metadata (setup.py) ... done
Building wheels for collected packages: scapy
 Building wheel for scapy (setup.py) ... done
 Created wheel for scapy: filename=scapy-2.5.0-py2.py3-none-any.whl
size=1444327
sha256=4d9478841048137b6b0376df95a4ac66a26c9680d190198a11f6
7a967f61c31b
 Stored in directory:
/root/.cache/pip/wheels/82/b7/03/8344d8cf6695624746311bc0d389e9d0
5535ca83c35f90241d
Successfully built scapy
Installing collected packages: scapy
Successfully installed scapy-2.5.0
from scapy.all import*

def analyze_packets(packets):
 if iP in packet:
 src_ip=packet[IP].src
 dst_ip=packet[IP].dst
 protocol=packet[IP].proto

 print(src_ip)
 print(dst_ip)
 print(protocol)

 if TCP in packet:
 src_port=packet[TCP].sport
 dst_port=packet[TCP].dport
 flags=packet[TCP].flags
 ## Firewall Rules

 elif UDP in packet:
 src_port=packet[UDP].sport
 dst_port=packet[UDP].dport

 elif ICMP in packet:
 icmp_type=packet[ICMP].type
 icmp_code=packet[ICMP].code

 print(src_port)
 print(dst_port)
 print(flags)

sniff(prn=analyze_packets, filter="ip",count=20)

ERROR: Cannot set filter: libpcap is not available. Cannot compile filter !
ERROR:scapy.runtime:Cannot set filter: libpcap is not available. Cannot
compile filter !
172.28.0.1
172.28.0.12
6
53100
8080
PA
172.28.0.12
172.28.0.1
6
8080
53100
A
172.28.0.12
172.28.0.1
6
8080
53100
PA
172.28.0.1
172.28.0.12
6
53100
8080
A
172.28.0.1
172.28.0.12
6
53100
8080
PA

172.28.0.1
172.28.0.12
6
53100
8080
PA
172.28.0.12
172.28.0.1
6
8080
53100
A
172.28.0.12
172.28.0.1
6
8080
53100
PA
172.28.0.1
172.28.0.12
6
53100
8080
A
172.28.0.1
172.28.0.12
6
53100
8080
PA
172.28.0.12
172.28.0.1
6
8080
53100
PA
172.28.0.1
172.28.0.12
6
53100
8080
A
172.28.0.1

172.28.0.12
6
53100
8080
PA
172.28.0.1
172.28.0.12
6
53100
8080
PA
172.28.0.12
172.28.0.1
6
8080
53100
A
172.28.0.12
172.28.0.1
6
8080
53100
PA
172.28.0.1
172.28.0.12
6
53100
8080
A
172.28.0.1
172.28.0.12
6
53100
8080
PA
172.28.0.12
172.28.0.1
6
8080
53100
PA
172.28.0.1
172.28.0.12

6
53100
8080
A
<Sniffed: TCP:20 UDP:0 ICMP:0 Other:0>

def analyze_network_traffic(suspicious_ip):
 packets = sniff(filter="host " + suspicious_ip, count=10)
 # analyze and print information about sniffed packets
 for packet in packets:
 print (packet.summary())
 # Add more packet analysis logic here

suspicious_ip = "192.168.1.1"
analyze_network_traffic (suspicious_ip)

ERROR: Cannot set filter: libpcap is not available. Cannot compile filter !
ERROR:scapy.runtime:Cannot set filter: libpcap is not available. Cannot
compile filter !
Ether / IP / TCP 172.28.0.1:39844 > 172.28.0.12:8080 PA / Raw
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:39844 A
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:39844 PA / Raw
Ether / IP / TCP 172.28.0.1:39844 > 172.28.0.12:8080 A
Ether / IP / TCP 172.28.0.1:39844 > 172.28.0.12:8080 FA
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:39844 FA
Ether / IP / TCP 172.28.0.1:39844 > 172.28.0.12:8080 A
Ether / IP / TCP 172.28.0.1:50212 > 172.28.0.12:8080 PA / Raw
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:50212 PA / Raw
Ether / IP / TCP 172.28.0.1:50212 > 172.28.0.12:8080 A
Ether / IP / TCP 172.28.0.1:50212 > 172.28.0.12:8080 PA / Raw
Ether / IP / TCP 172.28.0.1:50212 > 172.28.0.12:8080 PA / Raw
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:50212 A
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:50212 PA / Raw
Ether / IP / TCP 172.28.0.1:50212 > 172.28.0.12:8080 A
Ether / IP / TCP 172.28.0.1:50212 > 172.28.0.12:8080 PA / Raw
Ether / IP / TCP 172.28.0.1:38118 > 172.28.0.12:8080 S
Ether / IP / TCP 172.28.0.12:8080 > 172.28.0.1:38118 SA
Ether / IP / TCP 172.28.0.1:38118 > 172.28.0.12:8080 A
Ether / IP / TCP 172.28.0.1:38118 > 172.28.0.12:8080 PA / Raw

Based on the importance of investigating potential security breaches and

analyzing network packets the real time implementation may require

additional steps and considerations based on the specific scenario and

requirements and additionally, it's important to obtain proper

authorization before capturing network traffic in a production

environment.

 Question - 2

Imagine you are working as a cybersecurity analyst at a

prestigious firm. Recently, your company has been

experiencing a surge in cyber attacks, particularly

through phishing emails and websites. These attacks

have not only compromised sensitive information but also

tarnished the reputation of the company. In light of these

events, your team has been tasked with developing a

robust solution to detect and mitigate phishing websites

effectively. Leveraging your expertise in Python

programming and cybersecurity, your goal is to create a

program that can accurately identify phishing websites

based on various features and indicators.

Assignment Task:

Using the Python programming language, develop a

phishing website detection system that analyzes website

characteristics and determines the likelihood of it being a

phishing site.

Expected Procedure:

1. Accept 2 web URL. One real and another one phishing.

 2. Analyze the data from both the websites.

3. Identify the phishing site.

 Expected Code: 1. Phishing Website Detection with

Python

Import the necessary libraries: Start by importing the required libraries

in Python, such as `requests` and `beautifulsoup4`, to handle web

scraping and website analysis.

 Accept the URLs: Prompt the user to enter two URLs, one for a real

website and another for a potential phishing website.

 Fetch website data: Use the `requests` library to fetch the HTML

content of both websites.

 Analyze website data: Utilize the `beautifulsoup4` library to parse the

HTML content and extract relevant features for analysis. Some features

you can consider are the presence of suspicious keywords, links to

external domains, HTML form elements, JavaScript redirects, and

presence of SSL/TLS certificates.

 Apply heuristics: Define a set of heuristics or rules-based checks to

identify potential phishing indicators. For example, check if the URL

contains misspelled words, additional subdomains, or unusual

characters.

Comparing Features between URLs:

o We’ll examine the following features for each URL:
▪ Domain Registration Length: Check how long the domain has been

registered.
▪ SSL Certificate Validity: Verify the SSL certificate’s expiration date.
▪ Presence of Specific HTML Elements: Look for login forms (especially

in non-HTTPS sites).
▪ Links to External Sites: Identify any outbound links.
▪ Suspicious Email Addresses: Detect any suspicious email addresses

associated with the site.

Calculating a “Phishing Score”:

Assign weights to each feature based on its significance (e.g., longer
domain registration may reduce the phishing likelihood).

Calculate a score for each URL by summing up the weighted features.

Comparing Scores:

Compare the scores of both URLs.

The URL with a higher score is more likely to be a phishing sit

 Build a classification model: Train a binary classification model using

machine learning algorithms like logistic regression, decision tree, or

random forest. Use a labelled dataset of known phishing websites and

legitimate websites to create the model.

Feature engineering: Use the extracted website characteristics and

indicators as input features for the classification model. You may need to

reprocess and transform the data appropriately.

Train the model: Split the dataset into training and testing sets, then

train the classification model using the training data.

 Evaluate the model: Use the testing set to evaluate the model's

performance metrics such as accuracy, precision, recall, and F1 score.

Predict phishing likelihood: Apply the trained model to the new URLs

entered by the user to determine the likelihood of the second website

being a phishing site.

Display the results: Provide the user with the prediction and any

supporting information that led to the classification (e.g., suspicious

features or rules triggered).

. Phishing Website Detection with Python

!pip install beautifulsoup4

import requests
from bs4 import BeautifulSoup

def analyze_website(url):
 """
 Analyzes a website and extracts features to identify potential phishing
attempts.

 Args:
 url: The URL of the website to analyze.

 Returns:
 A dictionary containing extracted features and a phishing likelihood
score (0 - not likely, 1 - likely).
 """
 features = {}
 score = 0

 try:
 response = requests.get(url)
 soup = BeautifulSoup(response.text, 'html.parser')

 # Feature 1: Check for URL age (newer domains might be suspicious)
 # (Requires additional libraries for WHOIS lookup - not implemented
here)
 # features["domain_age"] = ...

 # Feature 2: Presence of SSL certificate (HTTPS)
 features["has_https"] = "https" in url

 # Feature 3: Check for subdomain mismatch between URL and
website content (e.g., bankname.com in URL but google.com content)
 features["domain_mismatch"] = url.split("//")[1].split(".")[0] not in
soup.title.text.lower()

 # Feature 4: Check for common phishing keywords in title and content
 phishing_keywords = ["login", "password", "urgent", "verify", "account"]
 features["has_phishing_keywords"] = any(keyword in soup.text.lower()
for keyword in phishing_keywords)

 # Feature 5: Check for existence of contact information
 features["has_contact_info"] = any(tag.name in ["address", "phone",
"email"] for tag in soup.find_all())

 # Calculate score based on features
 for feature, value in features.items():
 if value and value == "likely_phishing": # Weight features differently
based on importance
 score += 2
 elif value:
 score += 1

 except Exception as e:
 print(f"Error analyzing website: {e}")

 return features, score

def main():
 """

 Prompts user for two URLs, analyzes them, and identifies potential
phishing sites.
 """
 url1 = input("Enter URL of a real website: ")
 url2 = input("Enter URL of a suspected phishing website: ")

 features1, score1 = analyze_website(url1)
 features2, score2 = analyze_website(url2)

 print("\nReal Website Analysis:")
 print(features1)
 print(f"Phishing Likelihood Score: {score1} (Lower score indicates less
likely)")

 print("\nSuspected Phishing Website Analysis:")
 print(features2)
 print(f"Phishing Likelihood Score: {score2} (Higher score indicates more

likely)")

 if score2 > score1:
 print("\nThe suspected phishing website has a higher likelihood of
being malicious based on the analysis.")
 else:
 print("\nBased on the analysis, it's difficult to definitively classify the
suspected website.")

if __name__ == "__main__":
 main()

Enter URL of a real website: https://www.facebook.com
Enter URL of a suspected phishing website: https://www.facebook.co.in
Error analyzing website:
HTTPSConnectionPool(host='www.facebook.co.in', port=443): Max
retries exceeded with url: / (Caused by
NameResolutionError("<urllib3.connection.HTTPSConnection object at
0x79626c220580>: Failed to resolve 'www.facebook.co.in' ([Errno -2]
Name or service not known)"))

Real Website Analysis:
{'has_https': True, 'domain_mismatch': True, 'has_phishing_keywords':
True, 'has_contact_info': False}
Phishing Likelihood Score: 3 (Lower score indicates less likely)

https://www.facebook.com/
https://www.facebook.co.in/
http://www.facebook.co.in/
http://www.facebook.co.in/

Suspected Phishing Website Analysis:
{}
Phishing Likelihood Score: 0 (Higher score indicates more likely)

Based on the analysis, it's difficult to definitively classify the suspected
website.

Enter URL of a real website: https://tryhackme.com
Enter URL of a suspected phishing website: https://tryyhackme.com
Error analyzing website: HTTPSConnectionPool(host='tryyhackme.com',
port=443): Max retries exceeded with url: / (Caused by
NameResolutionError("<urllib3.connection.HTTPSConnection object at
0x79626c290940>: Failed to resolve 'tryyhackme.com' ([Errno -2] Name
or service not known)"))

Real Website Analysis:
{'has_https': True, 'domain_mismatch': False, 'has_phishing_keywords':
True, 'has_contact_info': False}
Phishing Likelihood Score: 2 (Lower score indicates less likely)

Suspected Phishing Website Analysis:
{}
Phishing Likelihood Score: 0 (Higher score indicates more likely)

https://tryhackme.com/
https://tryyhackme.com/

