
                                   Assignment 15 

Design and implement a Python script to detect Deep Fake videos 

utilizing the "Deepfake Detection Challenge" dataset available on 

Kaggle. 

 1. Define the objective of the "Deepfake Detection Challenge" dataset.  

2. Describe the characteristics of Deep Fake videos and the challenges 

associated with their detection.  

3. Outline the key steps involved in the implementation of a Deep Fake 

video detection algorithm using Python.  

4. Discuss the importance of dataset preprocessing in training a Deep 

Fake detection model and suggest potential preprocessing techniques.  

5. Propose and justify the choice of at least two machine learning or 

deep learning algorithms suitable for Deep Fake video detection. 

 6. Evaluate the performance metrics that can be used to assess the 

effectiveness of a Deep Fake detection model.  

7. Consider the ethical implications of Deep Fake technology and 

discuss the role of detection mechanisms in addressing these concerns.  

8. Write a complete code for this assignment. 
Recent years have seen a substantial increase in interest in deepfakes, a fast-
developing field at the nexus of artificial intelligence and multimedia. These artificial 
media creations, made possible by deep learning algorithms, allow for the 
manipulation and creation of digital content that is extremely realistic and challenging 
to identify from authentic content. Deepfakes can be used for entertainment, 
education, and research; however, they pose a range of significant problems across 
various domains, such as misinformation, political manipulation, propaganda, 
reputational damage, and fraud.  
                   Deepfakes are produced by manipulating existing videos and images to 

produce realistic-looking but wholly fake content. The rise of advanced artificial 

intelligence-based tools and software that require no technical expertise has made 

deepfake creation easier. With the unprecedented exponential advancement, the 

world is currently witnessing in generative artificial intelligence, the research 

community is in dire need of keeping informed on the most recent developments in 

deepfake generation and detection technologies to not fall behind in this critical arms 

race. 

Deep fakes present a number of serious issues that arise in a variety of fields. 
These issues could significantly impact people, society, and the reliability of digital 
media. Some significant issues include fake news, which can lead to the propagation 
of deceptive information, manipulation of public opinion, and erosion of trust in media 



sources. Deepfakes can also be employed as tools for political manipulation, influence 
elections, and destabilize public trust in political institutions. In addition, this technology 
enables malicious actors to create and distribute non-consensual explicit content to 
harass and cause reputational damage or create convincing impersonations of 
individuals, deceiving others for financial or personal gains. Furthermore, the rise of 
deep fakes poses a serious issue in the domain of digital forensics as it contributes to 
a general crisis of trust and authenticity in digital evidence used in litigation and 
criminal justice proceedings. All of these impacts show that deepfakes present a 
serious threat, especially in the current sensitive state of the international political 
climate and the high stakes at hand considering the conflicts on the global scene and 
how deepfakes and fake news can be weaponized in the ongoing media war, which 
can ultimately result in catastrophic consequences. 
               Therefore, deepfake detection techniques need to be constantly improved to 
catch up with the fast-paced evolution of generative artificial intelligence. There is a 
need for literature reviews to keep up with the fast-changing field of artificial 
intelligence and deepfakes to enable researchers and professionals to develop robust 
countermeasure methods and to lay the right groundwork to make it easier to detect 
and mitigate deepfakes. 
Detecting video deepfakes using machine learning (ML) involves several steps, 
primarily focusing on analysing visual and audio components of the video. Here’s a 
generalized process for detecting video deepfakes using ML: 

1. Data Collection and Pre-processing:  

— Gather a diverse dataset of both real and synthetic videos. This dataset should 

include examples of deepfake videos, as well as genuine recordings. 

— Preprocess the video data, which may involve converting it into frames, resizing, 

and normalization. 

2. Feature Extraction:  

— Extract relevant features from the video frames that can be used to distinguish 

between real and fake videos. Features might include: 

— Facial landmarks and expressions 

— Motion patterns and consistency 

— Statistical features of frames and sequences 

— Extract audio features such as spectrograms, pitch, and intensity. 



3. Model Selection:  

— choose an appropriate machine learning model for video classification. Commonly 

used models include:  

— Convolutional Neural Networks (CNNs) for image analysis. 

— Recurrent Neural Networks (RNNs) or 3D Convolutional Neural Networks (3D 

CNNs) for temporal data analysis. 

— Hybrid architectures combining CNNs and RNNs for spatio-temporal 

analysis. 

— Consider pre-trained models or architectures specifically designed for video 

analysis tasks. 

4. Model Training:  

— Split the dataset into training, validation, and test sets. 

— Train the selected model on the training data using the extracted features 

from both video frames and audio tracks. 

— Tune hyper parameters such as learning rate, batch size, and model architecture 

to optimize performance. 

— Regularize the model to prevent over fitting by using techniques such as 

dropout, batch normalization, or early stopping. 

5. Evaluation:  

— Evaluate the trained model on the validation set to assess its performance. 

— Use appropriate evaluation metrics for binary classification tasks, such as 

accuracy, precision, recall, F1 score, and receiver operating characteristic 

(ROC) curve analysis. 

— Adjust the model or training strategy based on validation performance. 



6. Testing and Deployment:  

— Evaluate the trained model on the test set to obtain unbiased performance 

estimates. 

— Deploy the model in a real-world setting to identify video deepfakes. 

— Integrate detection algorithms into automated content moderation systems to 

prevent the spread of deepfake videos online. 

— Continuously monitor and update the model to adapt to new deepfake generation 

techniques and maintain effectiveness over time. 

7. Post-Deployment Monitoring and Maintenance:  

— Monitor the model’s performance in detecting video deepfakes in real-world 

scenarios. 

— Collect additional data if necessary to improve the model’s robustness and 

generalization capabilities. 

— Update the model periodically to incorporate new insights, techniques, or data. 
By following this process, you can effectively detect video deepfakes using machine 
learning techniques, helping to mitigate the spread of disinformation and protect 
against the potential harms of deepfake technology. 

Deepfake Generation 

 Deepfake Manipulation Types 

There exist five primary types of deepfake manipulation, as shown in Figure. 



 
 
 
attribute manipulation: only the region that is relevant to the attribute is altered alone 
in order to change the facial appearance by removing or donning eyeglasses, 
retouching the skin, and even making some more significant changes, like changing 
the age and gender. Nevertheless, our attention is directed towards manipulations that 
are predominantly prevalent in video format due to their heightened engagement 
levels compared to image-based content. Consequently, it is more likely for people to 
fall victim to deepfake videos.  
Face synthesis: It is a manipulation type which entails creating images of a human 
face that does not exist in real life 
These manipulations are designed to make it appear as though a person is doing or 
saying something that they did not actually do or say. 
Face swapping: it is a form of manipulation that has primarily become prevalent in 
videos even though it can occur at the image level. It entails the substitution of one 
individual’s face in a video, known as the source, with the face of another person, 
referred to as the target. In this process, the original facial features and expressions 
of the target subject are mapped onto the associated areas of the source subject’s 
face, creating a seamless integration of the target’s appearance into the source video. 
The origins of research on the subject of identity swap can be traced to the morphing 
method introduced in 
Face reenactment: it is a manipulation technique that focuses on altering the facial 
expressions of a person in a video. It involves the replacement of the original facial 
expression of the subject, with the facial expression of another person 
Lip-syncing: where the objective is to generate a target face that appears authentic 
and synchronizes with given text or audio inputs. Achieving accurate lip movements 
and facial expressions that align with the source audio necessitates the use of 
advanced techniques. 

Additionally, meticulous post-processing is crucial to ensuring that the resulting 
video portrays a natural and seamless facial appearance. 



Deepfake Generation Techniques 

Multiple techniques exist for generating deepfakes. Generative Adversarial 
Networks GANs and Autoencoders are the most prevalent techniques. GANs consist 
of a pair of neural networks, a generator network and discriminator network, which 
engage in a competitive process. The generator network produces synthetic images, 
which are presented alongside real images to the discriminator network. The generator 
network learns to produce images that deceive the discriminator, while the 
discriminator network is trained to differentiate between real and synthetic images. 
Through iterative training, GANs become proficient at producing increasingly realistic 
deepfakes. On the other hand, Autoencoders can be used as feature extractors to 
encode and decode facial features. During training, the autoencoder learns to 
compress an input facial image into a lower-dimensional representation that retains 
essential facial features. This latent space representation can then be used to 
reconstruct the original image. Though, for deepfake generation, two autoencoders 
are leveraged, one trained on the face of the source and another trained on the target. 

Numerous sophisticated GAN-based techniques have emerged in the literature, 
contributing to the advancement and complexity of deepfakes.  

AttGAN is a technology for facial attribute manipulation; its attribute awareness 
enables precise and high-quality attribute changes, making it valuable for applications 
like face-swapping and age progression or regression. Likewise, StyleGAN is a GAN 
architecture that excels in generating highly realistic and detailed images. It allows for 
the manipulation of various facial features, making it a valuable tool for generating 
high-quality deepfakes. Similarly, STGAN modifies specific facial attributes in images 
while preserving the person’s identity. The model can work with labelled and 
unlabelled data and has shown promising results in accurately controlling attribute 
changes. Another technique is StarGANv2, which is able to perform multi-domain 
image-to-image translation, enabling the generation of images across multiple 
different domains using a single unified model.  

Unlike the original StarGAN, which could only perform one-to-one translation 
between each pair of domains, StarGANv2 can handle multiple domains 
simultaneously. An additional GAN variant is CycleGAN, which specializes in style 
transfer between two domains. It can be applied to transfer facial features from one 
individual to another, making it useful for face-swapping applications. Moreover, there 
is RSGAN, which can encode the appearances of faces and hair into underlying latent 
space representations, enabling the image appearances to be modified by 
manipulating the representations in the latent spaces. For a given audio input, LipGAN 
is intended to produce realistic lip motions and speech synchronization. 

In addition to the previously mentioned methods, there is a range of open-source 
tools readily available for digital use, enabling users to create deep fakes with relative 
ease, like FaceApp, Reface, DeepBrain, DeepFaceLab, and Deepfakes Web 
.These tools have captured the public’s attention due to their accessibility and ability 
to produce convincing deepfakes. It is essential for users to utilize these tools 
responsibly and ethically to avoid spreading misinformation or engaging in harmful 
activities. As artificial intelligence is developing fast, deepfake generation algorithms 
are simultaneously becoming more sophisticated, convincing, and hard to detect. 
 
Deepfake Detection 

The diverse clues and detection models exploited to achieve the task of 
classifying fake media from genuine ones.  it will delve into the various state-of-the-art 



deep learning architectures implemented in deepfake detection techniques and 
provide a summary of several recent deepfake detection models. 

 Deepfake Detection Clues 

Deepfakes can be detected by exploiting various clues, as summarized in Figure 2. 
One approach is to analyse spatial inconsistencies by closely examining deepfakes 
for visual artifacts, facial landmarks, or intra-frame inconsistencies. Another method 
involves detecting convolutional traces that are often present in deepfakes as a result 
of the generation process, for instance, bi-granularity artifacts and GAN fingerprints. 
Additionally, biological signals such as abnormal eye blinking frequency, eye colour, 
and heartbeat can also indicate the presence of a deepfake, as can temporal 
inconsistencies or the discontinuity between adjacent video frames, which may result 
in flickering, jittering, and changes in facial position. Poor alignment of facial emotions 
on swapped faces in deepfakes is a high-level semantic feature used in detection 
techniques. Detecting audio-visual inconsistencies is a multimodal approach that can 
be used for deepfakes that involve swapping both faces and audio. Another 
multimodal approach is to exploit spatial-temporal features by inspecting visual 
irregularities within individual video frames (intra-frame inspection) and analyzing 
temporal characteristics across video streams (inter-frame examination). 

 

Figure 2. Clues and features employed by deepfake detection models in the 
identification of deepfake content. 

Detection Based on Spatial Artifacts 

To effectively use face landmark information, in Ref., Liang et al. described a 
facial geometry prior module. The model harnesses facial maps and correlation within 
the frequency domain to study the distinguishing traits of altered and unmanipulated 
regions by employing a CNN-LSTM network. In order to predict manipulation 
localization, a decoder is utilized to acquire the mapping from low-resolution feature 
maps to pixel-level details, and SoftMax function was implemented for the 
classification task. A different approach, dubbed forensic symmetry, by Li, G. et al., 
assessed whether the natural features of a pair of mirrored facial regions are identical 
or dissimilar. The symmetry attribute extracted from frontal facial images and the 
resemblance feature obtained from profiles of the face images are obtained by a multi-
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stream learning structure that uses DRN as its backbone network. The difference 
between the two symmetrical face patches is then quantified by mapping them into 
angular hyperspace. A heuristic prediction technique was used to put this model into 
functioning at the video level. As a further step, a multi-margin angular loss function 
was developed for classification. 

Hu et al. proposed DeepfakeMAE which is a detection model that can leverage 
the commonalities across all facial components. To be more specific, a masked 
autoencoder is pretrained to learn facial part consistency by randomly masking some 
facial features and rebuilding missing sections using the facial parts that are still 
visible. This is performed given a real face image. Moreover, a model employing two 
networks, both utilizing pre-trained encoders and decoders, is leveraged to optimize 
the differentiation between authentic and counterfeit videos. Yang, J. et al. tackled 
deepfake detection from a different perspective where they simulate the fake image 
generation process to explore forgery traces. A multi-scale self-texture attention 
Generative Network is suggested for this aim employing an encoder–decoder 
generator, Resnet as backbone network, and the self-texture attention method to 
improve the texture characteristics in the process of disassembling an image. 
Additionally, a loss function termed Prob-tuple loss confined by classification 
probability is suggested. To identify visual artifacts at different scales, Wang et al. 
introduced a Multi-modal Multi-scale Transformer that works on patches of various 
sizes to identify disparities within images at various spatial tiers as well as forgery 
artifacts in the frequency domain; and the latter is added to RGB information by means 
of a cross modality fusion block. An approach based on GANs for deepfake detection 
is suggested by Xiao et al., leveraging the concealed gradient data within the 
grayscale representation of the manipulated image and incorporating focal loss for the 
classification task. 

 Detection Based on Biological/Physiological Signs 

Li, Y. et al. adopted an approach based on identifying eye blinking, a biological 
signal that is not easily conveyed in deepfake videos. Therefore, a deepfake video can 
be identified by the absence of eye blinking. To spot open and closed eye states, a 
deep neural network model that blends CNN and a recursive neural network is used 
while taking into account previous temporal knowledge. Alternatively, Hernandez-
Ortega et al. present an innovative approach for detecting deepfake videos that 
focuses on analyzing heart rate information through remote photoplethy smography 
(rPPG). By examining video sequences and identifying slight alterations in skin color, 
the existence of human blood beneath the tissues can be revealed. The proposed 
detection system, called DeepfakesON-Phys, incorporates a Convolutional Attention 
Network to extract spatial and temporal details from video frames and effectively 
combine the two origins for improved fake video detection. 

Detection Based on Audio-Visual Inconsistencies 

Boundary Aware Temporal Forgery Detection is a multimodal technique 
introduced by Cai et al. for correctly predicting the borders of fake segments based on 
visual and auditory input. While an audio encoder using a 2DCNN learns 
characteristics extracted from the audio, a video encoder leveraging a 3DCNN learns 
frame-level spatial-temporal information. Yang, W. et al. also exploited discrepancy 
between audio and visual elements for deepfake identification. A temporal-spatial 



encoder for feature embedding explores the disparity between audio and visual 
components at temporal and spatial levels and a multi-modal joint-decoder, designed 
to concurrently acquire knowledge of multi-modal interactions and integrate audio-
visual data, alongside the cross-modal classifier incorporated for manipulation 
detection. Similarly performed by considering both the audio and visual aspects of a 
video, Ilyas et al. introduced an end-to-end method called AVFakeNet. The detection 
model is comprised of a Dense Swin Transformer Net (DST-Net). 

 Detection Based on Convolutional Traces 

To detect deepfakes, Huang et al. harnessed the imperfection of the up-sampling 
process in GAN-generated deepfakes by employing a map of gray-scale fakeness. 
Furthermore, attention mechanism, augmentation of partial data, and clustering of 
individual samples are employed to improve the model’s robustness. Chen et al. 
exploited a different trace which is bi-granularity artifacts, intrinsic-granularity artifacts 
that are caused by up-convolution or up-sampling operations, and extrinsic granularity 
artifacts that are the result of the post-processing step that blends the synthesized 
face to the original video. Deepfake detection is tackled as a multi-task learning 
problem where ResNet-18 is used as the backbone feature extractor. Whereas L. 
Guarnera et al. provided a method that uses an expectation maximization algorithm to 
extract a set of local features intended to simulate the convolutional patterns frequently 
found in photos. The five currently accessible architectures are GDWCT, StarGAN, 
AttGAN, StyleGAN, and StyleGAN2. Next, naive classifiers are trained to differentiate 
between real images and those produced by these designs. 

Detection Based on Identity Information 

    Based on the intuition that every person can exhibit distinct patterns in the 
simultaneous occurrence of their speech, facial expressions, and gestures, Agarwal 
et al. introduced a multimodal detection method with a semantic focus that 
incorporates speech transcripts into gestures specific to individuals analysis using 
interpretable action units to model facial and cranial motion of an individual. 
Meanwhile, Dong et al. proposed an Identity Consistency Transformer that learns 
simultaneously and identifies vectors for the inner face and another for the outer face; 
moreover, the model uses a novel consistency loss to drive both identities apart when 
their labels are different and to bring them closer when their labels are the same. 
Similarly, Nirkin et al. identified deepfakes by looking for identity-to-identify 
inaccuracies between two identity vectors that represent the inner face region and its 
outer context. The identity vectors are obtained using two networks based on the 
Xception architecture and trained using a vanilla cross entropy loss. Focusing on 
temporal identity inconsistency, Liu et al. introduced a model that captures the 
disparities of faces within video frames of the same person by encoding identity 
information in all frames to identity vectors and learning from these vectors the 
temporal embeddings, thus identifying inconsistencies. The proposed model 
integrates triplet loss for enhanced discrimination in learning temporal embeddings. 

Detection Based on Facial Emotions 

Despite the fact that deepfakes can produce convincing audio and video, it can 
be difficult to produce material that maintains coherence concerning high-level 



semantics, including emotions. Unnatural displays of emotion, as determined by 
characteristics like valence and arousal, where arousal indicates either heightened 
excitement or tranquility and valence represents positivity or negativity of the 
emotional state, can offer compelling proof that a video has been artificially created. 
Using the emotion inferred from the visage and vocalizations of the speaker, Hosler et 
al. introduced an approach for identifying deepfakes. The suggested method makes 
use of long, short-term memory networks and visual descriptors to infer emotion from 
low-level audio emotion; a supervised classifier is then incorporated to categorize 
videos as real or fake using the predicted emotion. Leveraging the same high-level 
features, Conti et al. focused on identifying deepfake speech tracks created using text-
to-speech (TTS) algorithms that manipulate the emotional tone of the voice content. 
To extract emotional features, a Speech Emotion Recognition network trained on a 
speech dataset labeled with the speaker’s emotional expression is employed, 
alongside a supervised classifier that receives emotional features as input and predicts 
the authenticity of the provided speech track as either genuine or deepfake. 

Detection Based on Temporal Inconsistencies 

To leverage temporal coherence to detect deepfakes, Zheng et al. proposed an 
approach to reduce the spatial convolution kernel size to 1 while keeping the temporal 
convolution kernel size constant using a fully temporal convolution network in addition 
to a Transformer Network that explores the long-term temporal coherence. Pei et al. 
exploited the temporal information in videos by incorporating a Bidirectional-LSTM 
model. Gu et al. proposed a Region-Aware Temporal Filter module to generate 
temporal filters to distinct spatial areas by breaking down the dynamic temporal kernel 
into fundamental, region-independent filters. Additionally, region-specific aggregation 
weights are introduced to steer these regions in adaptively acquiring knowledge of 
temporal incongruities. The input video is split into multiple snippets to cover the long-
term temporal dynamics. Inspired by how humans detect fake media through browsing 
and scrutinizing, Ru et al. presented a model dubbed Bita-Net which consists of two 
pathways: one that checks the temporal consistency by rapidly scanning the entire 
video, and a second pathway improved by an attention branch to analyze key frames 
of the video at a lower rate. 

 Detection Based on Spatial-Temporal Features 

The forced mixing of the manipulated face in the generation process of deepfakes 
causes spatial distortions and temporal inconsistencies in crucial facial regions, which 
Sun et al. proposed to reveal by extracting the displacement trajectory of the facial 
region. For the purpose of detecting fake trajectories, a fake trajectory detection 
network, utilizing a gated recurrent unit backbone in conjunction with a dual-stream 
spatial-temporal graph attention mechanism, is created. In order to detect the spatial-
temporal abnormalities in the altered video trajectory, the network makes use of the 
extracted trajectory and explicitly integrates the important data from the input 
sequences. Lu et al. proposed a detection method based on an improved Capsule 
Network and the fusion of temporal–spatial features. The optical flow algorithm 
effectively captures the temporal characteristics of manipulated videos, and the 
improved Capsule Network reaches a thorough conclusion by considering temporal–
spatial features using weight initialization and updating on a dynamic routing algorithm. 
Meanwhile, Waseem et al. described a dual-stream convolutional neural network 



strategy is employed, incorporating XceptionNet and 3DCNN, to capture spatial 
irregularities and temporal variations. Initially, MTCNN is employed for face detection 
and extraction from input video frames. Subsequently, 3DCNN and XceptionNet are 
utilized to extract features from facial images. Finally, fully connected layers and 
sigmoid layers determine the authenticity of the video. 

Deep Learning Models for Deepfake Detection 

Several advanced technologies have been employed in the domain of deepfake 
detection, such as machine learning and media forensics-based approaches. 
However, it is widely acknowledged that deep learning-based models currently exhibit 
the most remarkable performance in discerning between fabricated and authentic 
digital media. These models leverage sophisticated neural network architectures 
known as backbone networks, displayed in Figure 3, which have demonstrated 
exceptional efficacy in computer vision tasks. Prominent examples of such 
architectures include VGG, EfficientNet, Inception, CapsNet, and ViT, and are 
particularly renowned for their prowess in the feature extraction phase. Deep learning-
based detection models go beyond conventional methods by incorporating additional 
techniques to further enhance their performance. One such approach is meta-learning, 
which enables the model to learn from previous experiences and adapt its detection 
capabilities accordingly. By leveraging meta-learning, these models become more 
proficient at recognizing patterns and distinguishing between genuine and 
manipulated content. 

 

Figure 3. Overview of predominant deep learning architectures, networks, and 
frameworks employed in the development of deepfake detection models. 

Furthermore, data augmentation plays a crucial role in training deep learning-
based detection models. This technique involves augmenting the training dataset with 
synthetic or modified samples, which enhances the model’s capacity to generalize and 
recognize diverse variations of deepfake media. Data augmentation enables the 
model to learn from a wider range of examples and improves its robustness against 
different types of manipulations. Attention mechanisms have also proven to be 
valuable additions to deep learning-based detection models. By directing the model’s 
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focus toward relevant features and regions of the input data, attention mechanisms 
enhance the model’s discriminative power and improve its overall accuracy. These 
mechanisms help the model select critical details, making it more effective in 
distinguishing between real and fake media. Collectively, the combination of deep 
learning-based architectures, meta-learning, data augmentation, and attention 
mechanisms has significantly advanced the field of deepfake detection. These 
technologies work in harmony to equip models with the ability to identify and flag 
manipulated media with unprecedented accuracy. 

The Convolutional Neural Network is a powerful deep learning algorithm designed 
for image recognition and processing tasks. It consists of various levels, 
encompassing convolutional layers, pooling layers, and fully connected layers. There 
are different types of CNN models used in deepfake detection such as ResNet, short 
for Residual Network, which is an architecture that introduces skip connections to fix 
the vanishing gradient problem that occurs when the gradient diminishes significantly 
during backpropagation; these connections involve stacking identity mappings and 
skipping them, utilizing the layer’s prior activations. This technique accelerates first 
training by reducing the number of layers in the network. The concept underlying this 
network is different from having the layers learn the fundamental mapping. Rather than 
directly defining the initial mapping as H(x), we let the network adapt and determine it, 
as shown in Figure 4. 

F(x): = H(x) − x which gives H(x): = F(x) + x. 

 

Figure 4. ResNet building block (source:). 

Another architecture based on CNNs is VGG, short for Visual Geometry Group, 
which comprises multiple layers. Instead of using large kernel sized filters, this 
architecture utilizes multiple filters with a kernel size of 3 × 3. The VGG16 architecture 
employs a doubling of filters at each convolutional layer, a fundamental design 
principle. However, a notable drawback of the VGG16 network is its substantial size, 
resulting in extended training times due to its depth and numerous fully connected 
layers. The model’s file size exceeds 533 MB, rendering the implementation of a VGG 
network a time-intensive endeavour. 
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An additional significant CNN-based architecture in deepfake detection models is 
EfficientNet. It has a scaling method that applies a uniform scaling approach to all 
dimensions of depth, width, and resolution. This is achieved by utilizing a compound 
coefficient. In Figure 5, the performance of EfficientNet is presented alongside other 
network architectures. The largest model within the EfficientNet series, EfficientNet 
B7, achieved remarkable results on both the ImageNet and CIFAR-100 datasets. 
Specifically, it achieved approximately 84.4% in top-1 accuracy and 97.3% in top-5 
accuracy on the ImageNet dataset. Furthermore, this model was not only significantly 
more compact, being 8.4 times smaller, but also notably faster, with a speedup of 6.1 
times compared to the prior leading CNN model. Additionally, it exhibited strong 
performance with 91.7% accuracy on the CIFAR-100 dataset and an impressive 
98.8% accuracy on the Flowers dataset. 

 

Figure 5. EfficientNet performance on the ImageNet dataset (source:). 

Inception models help mitigate the computational cost and other overfitting in 
CNN architectures by utilizing stacked 1 × 1 convolutions for dimensionality reduction. 
Xception, developed by researchers at Google, is an advanced version of the 
Inception architecture. It offers a novel approach by reinterpreting Inception modules 
as an intermediate step between standard convolution and depthwise separable 
convolution. While the conventional convolution operation combines channel-wise and 
spatial-wise computations in a single step, depthwise separable convolution divides 
this process into two distinct steps. Firstly, it employs depthwise convolution to apply 
an individual convolutional filter to each input channel, and subsequently, pointwise 
convolution is employed to create a linear combination of the results obtained from the 
depthwise convolution. 
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An alternative to CNNs would be Capsule Networks that are able to retrieve 
spatial information as well as other important details to avoid the information loss seen 
during pooling operations. Capsules exhibit equivariance characteristics and consist 
of a neural network that handles vectors as inputs and outputs, in contrast to the scalar 
values processed by CNNs. This unique attribute of capsules enables them to capture 
not only the features of an image, but also its deformations and various viewing 
conditions. Within a capsule network, each capsule comprises a cluster of neurons, 
with each neuron’s output signifying a distinct attribute of the same feature. This 
structure offers the advantage of recognizing the entire entity by first identifying its 
constituent parts. 

Recurrent Neural Networks are a kind of neural network that handles sequential 
data by feeding it in a sequential manner. They are specifically designed to tackle the 
challenge of time-series data, where the input is a sequence of data points. In an RNN, 
the input not only includes the current data point but also the previous ones. This 
creates a directed graph structure between the nodes, following the temporal 
sequence of the data. Additionally, each neuron in an RNN has its own internal 
memory, which retains information from the computations performed on the previous 
data points. LSTM, or Long Short-Term Memory, is a specific type of recurrent neural 
network that addresses the challenge of long-term dependencies in sequential data 
by allowing more accurate predictions based on recent information. While traditional 
RNNs struggle as the gap between relevant information increases, LSTM networks 
excel at retaining information over extended periods. This capability makes LSTM 
particularly effective for processing, predicting, and classifying time-series data. 

A new model that has emerged as a strong alternative to convolutional neural 
networks is the vision transformer. ViT models exhibit exceptional performance, 
surpassing the state-of-the-art CNNs by nearly four times in both computational 
efficiency and accuracy. Transformers, which are non-sequential deep learning 
models, play a significant role in vision transformers. They utilize the self-attention 
mechanism, assigning varying degrees of importance to different segments of the 
input data. The Swin Transformer is a type of ViTs that exhibits versatility in modeling 
at different scales and maintains linear computational complexity concerning image 
size. This advantageous combination of features enables the Swin Transformer to be 
well suited for a wide array of vision tasks, encompassing image classification, object 
detection, and semantic segmentation, among others. Another variant of transformers 
is Video Transformers, which are efficient for evaluating videos on a large scale, 
ensuring optimal utilization of computational resources and reduced wall runtime. This 
capability enables full video processing during test time, making VTNs particularly 
well-suited for handling lengthy videos. Table 2 shows some of the recent detection 
techniques. 
Table 2. Summary of recent deepfake detection models, employed techniques, 
feature sets, datasets, and intra-dataset performance results. 

 

Datasets 
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In the context of deepfakes, datasets serve as the foundation for training, testing, 
and benchmarking deep learning models. The accessibility of reliable and diverse 
datasets plays a crucial role in the development and evaluation of deepfake 
techniques. A variety of important datasets, summarized in Table 3, have been 
curated specifically for deepfake research, each addressing different aspects of the 
problem and contributing to the advancement of the field. Figure 6 shows some of the 
widely used datasets in deepfake detection models’ improvement. 

 

Figure 6. Frequency of usage of different deepfake datasets in the discussed 
detection models within this survey. 

Table 3. Key characteristics of the most prominent and publicly available deepfake 
datasets. 

 

FaceForensics++ is a well-known dataset used for deepfake detection that was 
provided in 2019 as an addition to the FaceForensics dataset, which was made 
available in 2018 and only included videos with altered facial expressions. Four 
subsets of the FF++ dataset are available: FaceSwap, Deepfake, Face2Face, and 
NeuralTextures. It includes 3000 edited videos in addition to 1000 original videos that 
were pulled from the YouTube-8M dataset. The dataset can be used to test deepfake 
detection strategies on both compressed and uncompressed videos because it is 
supplied in two different quality levels. The FF++ dataset has limits when it comes to 
spotting lip-sync deepfakes, and some videos might have color discrepancies near the 
modified faces. 

DFDC, the deepfake detection challenge dataset hosted by Facebook, stands as 
the most extensive collection of face swap videos available and openly accessible. It 

https://www.mdpi.com/2073-431X/12/10/216#table_body_display_computers-12-00216-t003
https://www.mdpi.com/2073-431X/12/10/216#fig_body_display_computers-12-00216-f006


contains over 100,000 total clips sourced from 3426 paid actors from diverse 
backgrounds, including different genders, ages, and ethnic groups. 

DeeperForensics-1.0 is a significant dataset available for detecting deepfakes 
that contains 50,000 original clips and 10,000 forged ones. These manipulated videos 
were generated using a conditional autoencoder called DF-VAE. The dataset includes 
a broad range of actor appearances and is designed to represent real-world scenarios 
more accurately by including a blend of alterations and disturbances, including 
compression, blurriness, noise, and other visual anomalies. 

WildDeepfake is a dataset that is widely recognized as a difficult one for deepfake 
detection. It features both authentic and deepfake samples obtained from the internet, 
which distinguishes it from other available datasets. While previous datasets have only 
included synthesized facial images, this dataset includes a variety of body types. 
However, there remains a need for a more comprehensive dataset that can generate 
full-body deepfakes to improve the robustness of deepfake detection models. 

Celeb-DF dataset is a collection of authentic and synthesized deepfake videos 
that are visually similar in quality to those that are commonly shared online. This 
dataset represents a significant expansion of its first version, which contained only 795 
deepfake videos. Celeb-DF comprises 590 unaltered videos sourced from YouTube, 
featuring individuals of varying ages, ethnicities, and genders, along with 5639 
associated deepfake videos, all of which were created using readily accessible 
YouTube excerpts featuring 59 famous personalities from diverse backgrounds. The 
deepfake videos were generated using an advanced synthesis method, resulting in 
more realistic and convincing deepfakes. 

Finding fake faces among numerous genuine faces in scenes taken in the nature 
is a significant difficulty. OpenForensics dataset was specifically created with face-
wise rich annotations for the detection and segmentation of face forgeries. The 
OpenForensics dataset has a lot of potential for study in generic human face detection 
and deepfake prevention because of its extensive annotations. A total of 334 K human 
faces are depicted among 115 K photos in version 1.0.0. This collection includes 
numerous individuals with different origins, ages, genders, stances, positions, and 
face occlusions. 

FakeAVCeleb is a multimodal deepfake detection dataset that includes deepfake 
videos and cloned deepfake audio. It features diverse celebrities in terms of ethnicity, 
age, and gender balance. The dataset was evaluated using 11 different deepfake 
detection methods, including unimodal, ensemble-based, and multimodal approaches. 
To create deepfake videos, 500 real videos were used as sources and generated 
around 20,000 deepfake videos using various techniques like face-swapping and 
facial reenactment. 

DeepfakeTIMIT is a dataset containing 620 videos where faces were swapped 
using GAN-based techniques. It was created by selecting 16 pairs of similar-looking 
individuals from the VidTIMIT database, with two quality levels for each pair (64 × 64 
and 128 × 128). The original audio tracks were retained without any alterations. 

UADFV dataset includes 98 videos, totaling 32,752 frames, evenly split between 
49 real videos and 49 fake ones. Each video features a single subject and lasts around 
11 s. Among these videos, there are 49 original real videos, which were manipulated 
to generate 49 Deep Fake videos. 

DFD or DeepFakeDetection is a dataset created by Google and Jigsaw and 
encompasses a wide range of scenes that consist of more than 363 genuine 
sequences featuring 28 paid actors across 16 different scenes. Additionally, it includes 
over 3000 manipulated videos. 



HiFiFace is a dataset that contains 1000 fake videos from FaceForensics++, 
meticulously adhering to the source and target pair configurations defined in FF++. 
Additionally, it includes 10,000 frames extracted from FF++ videos, facilitating 
quantitative testing. 

KoDF is an extensive compilation of synthesized and authentic videos primarily 
centered around Korean subjects. Its primary objective is to support the advancement 
of deepfake detection methods. This dataset comprises 62,166 authentic videos and 
175,776 fake videos, featuring 403 different subjects. 

One of the challenges faced by researchers in the field of deepfakes is the lack 
of comprehensive and diverse datasets for deepfake detection. Existing datasets 
either have limited diversity, meaning they do not cover a wide range of scenarios and 
variations, or only focus on basic forgery detection without capturing the intricacies 
and subtleties of advanced deepfakes. To address this problem and push the 
boundaries of deepfake detection, researchers and technology companies have taken 
up the task of constructing several benchmarks. These benchmarks serve as 
standardized datasets that encompass a broad range of facial variations, lighting 
conditions, camera angles, and other relevant factors. By including diverse samples, 
these benchmarks enable researchers to develop and evaluate advanced algorithms 
and techniques for detecting and analyzing deepfakes more effectively. To mention a 
few, ForgeryNet is an extremely large deepfake benchmark with consistent 
annotations in both image and video data for four distinct tasks: Image Forgery 
Classification, Spatial Forgery Localization, Video Forgery Classification, and 
Temporal Forgery Localization. It consists of 2.9 million images, 221,247 videos and 
15 manipulation methods. 

For the predominant focus on a single modality and limited coverage of forgery 
methods, current datasets for deepfake detection are primarily constrained when it 
comes to audio-visual deepfakes. DefakeAVMiT is a dataset includes an ample 
amount of deepfake visuals paired with corresponding audios and generated by 
various deepfake methods affecting either modality. Alternatively, LAV-DF consists of 
content-driven manipulations to help with the detection of content altering fake 
segments in videos due to the lack of suitable datasets for this task. It is important to 
note that the availability and creation of datasets are ongoing processes, with new 
datasets being introduced and existing ones being expanded or refined over time. The 
continuous development of diverse and representative datasets is crucial to ensure 
the robustness and generalizability of deepfake detection algorithms, as well as to 
keep up with the evolving techniques employed by malicious actors. 

 
Dataset preprocessing plays a crucial role in training a Deep Fake detection 

model. Preprocessing techniques help in enhancing the quality and effectiveness of 
the dataset, improving the performance of the detection model.  

Here are some key aspects highlighting the importance of dataset preprocessing 
and potential preprocessing techniques for Deep Fake detection:  

1. Data Cleaning: Data cleaning involves removing any corrupt or irrelevant data 
from the dataset. In Deep Fake detection, this step helps ensure that the dataset 
consists of high-quality and reliable samples. It may involve removing duplicates, 
irrelevant frames, or videos with low resolution or quality.  

2. Labeling and Annotation: Proper labelling and annotation are essential for 
training a Deep Fake detection model. Each sample in the dataset needs to be 
accurately labelled as either genuine or manipulated. Additionally, annotating specific 



regions of interest, such as facial landmarks or manipulated areas, can aid in training 
the model to focus on relevant features.  

3. Frame Extraction and Selection: Deep Fake videos often consist of multiple 
frames or frames with different levels of manipulation. Extracting and selecting 
representative frames from each video can help create a diverse and balanced 
dataset. This ensures that the model learns from various visual cues and can 
generalize well to different Deep Fake scenarios.  

4. Augmentation Techniques: Data augmentation techniques can be applied to 
increase the dataset size and improve the model's robustness. Augmentation methods 
such as rotation, flipping, scaling, and brightness adjustment can help create 
additional variations of each sample in the dataset. This can assist in reducing over 
fitting and improving the model's ability to detect Deep Fakes in real-world scenarios. 

 5. Bias Correction: It is essential to address any biases in the dataset during 
preprocessing. Biases can arise due to differences in distribution or characteristics 
between genuine and manipulated videos. Correcting these biases can help ensure a 
fair and unbiased training process, leading to a more accurate and reliable detection 
model.  

6. Normalization and Standardization: Normalization and standardization 
techniques can be applied to bring the features of the dataset to a similar scale and 
distribution. This step helps in improving the convergence and stability of the model 
during training. Normalizing pixel values, applying z-score scaling, or using other 
normalization techniques can be beneficial for Deep Fake detection.  

7. Dataset Balancing: Ensuring a balanced dataset is important to prevent the 
model from favouring one class over the other. Deep Fake detection datasets often 
have an imbalance in the number of genuine and manipulated videos. Techniques 
such as oversampling the minority class or under sampling the majority class can help 
achieve a balanced dataset for more effective training.  

By implementing appropriate dataset preprocessing techniques, the Deep Fake 
detection model can learn from a high-quality, diverse, and balanced dataset. This 
enhances the model's ability to generalize well, detect various Deep Fake 
manipulation techniques, and adapt to real-world scenarios. 

One of the key measures to mitigate the negative impacts of Deep Fakes is the 
development and implementation of robust detection mechanisms.  

These detection mechanisms play a crucial role in identifying and preventing the 
spread of manipulated media. Here are some important aspects to consider:  

1. Advancing Technology: Continuous research and development of advanced 
detection algorithms are essential to keep pace with evolving Deep Fake techniques. 
By leveraging machine learning, computer vision, and natural language processing, 
these mechanisms can analyse various visual and audio cues to identify discrepancies 
or anomalies that indicate manipulation.  

2. Collaborative Efforts: Addressing Deep Fake concerns requires collaboration 
between technology developers, researchers, policymakers, and social media 
platforms. Sharing knowledge, resources, and best practices can enhance the 
effectiveness of detection mechanisms and enable a collective response to combat 
the spread of malicious Deep Fakes.  

3. Data Sharing and Labeling: Establishing comprehensive datasets of known 
Deep Fakes, combined with accurate labelling, can facilitate the training and 
evaluation of detection models. This data can be sourced from both synthetic and real-
world Deep Fake examples, enabling the algorithms to learn patterns and 
characteristics specific to manipulated content.  



4. User Education and Awareness: Educating the public about Deep Fakes is 
crucial to empower individuals in identifying and critically assessing the authenticity of 
media they encounter. Promoting media literacy, teaching digital media literacy skills, 
and creating awareness campaigns can help users become more skeptical and 
discerning consumers of content.  

5. Platform Responsibility: Social media platforms and content-sharing platforms 
have a significant role in preventing the spread of Deep Fakes. Implementing policies 
and guidelines to regulate the sharing and promotion of manipulated content, as well 
as investing in automated detection systems, can act as an effective deterrent.  

6. Legal and Policy Frameworks: Governments and legal authorities need to 
adapt and enforce legislation that addresses Deep Fake creation and dissemination. 
Clear guidelines, regulations, and consequences for producing and sharing malicious 
Deep Fakes can foster an environment of accountability and deterrence. In conclusion, 
detection mechanisms are vital in addressing the ethical implications of Deep Fake 
technology. By combining technological advancements, collaborative efforts, user 
education, platform responsibility, and legal frameworks, we can strive towards 
minimizing the harmful impact of Deep Fakes while safeguarding trust and integrity in 
digital content. 
Coding for deepfake detection in kaggle using python 

Coding part for video in googlecolab extracting frames from video 

import cv2 

from google.colab import drive 

drive.mount('/content/drive', force_remount=True) 

video_path='/content/drive/My Drive/file folder/file.mp4' 

cap=cv2.VideoCapture(video_path) 

if not cap.isOpened(): 

  print("Video File Not Loaded. Retry with a different") 

(create folder in my drive file folder) 

else:                                  

  frames_dir='/content/drive/My Drive/ file folder /video_frames' 

  frame_count=0 

  while True: 

    ret, frame = cap.read() #Meta Information & The acutal Frame 

    if not ret: 

      break 

    frame_count +=1 

    frame_name=f'frame_{frame_count}.jpg' 

    frame_path=f'{frames_dir}/{frame_name}' 

    cv2.imwrite(frame_path, frame) 

  print(f'Total Number of frames extracted are {frame_count}') 

cap.release() 

After video converted into image frames deepfake detection code for images 

performed in kaggle using import the dataset from extracted frames 

 

!pip install -U --upgrade tensorflow 

import sys 

import sklearn 

import tensorflow as tf 

 



import cv2 

import pandas as pd 

import numpy as np 

 

import plotly.graph_objs as go 

from plotly.offline import iplot 

from matplotlib import pyplot as plt 

import matplotlib.pyplot as plt 

 

plt.rc('font', size=14) 

plt.rc('axes', labelsize=14, titlesize=14) 

plt.rc('legend', fontsize=14) 

plt.rc('xtick', labelsize=10) 

plt.rc('ytick', labelsize=10) 

import os 

 

def get_data(): 

    return pd.read_csv('../input/deepfake-faces/metadata.csv') 

meta=get_data() 

meta.head() 

meta.shape 

 

len(meta[meta.label=='FAKE']),len(meta[meta.label=='REAL']) 

real_df = meta[meta["label"] == "REAL"] 

fake_df = meta[meta["label"] == "FAKE"] 

sample_size = 400 

 

real_df = real_df.sample(sample_size, random_state=42) 

fake_df = fake_df.sample(sample_size, random_state=42) 

 

sample_meta = pd.concat([real_df, fake_df]) 

from sklearn.model_selection import train_test_split 

 

Train_set, Test_set = 

train_test_split(sample_meta,test_size=0.2,random_state=42,stratify=sample_

meta['label']) 

Train_set, Val_set  = 

train_test_split(Train_set,test_size=0.3,random_state=42,stratify=Train_set['lab

el']) 

Train_set.shape,Val_set.shape,Test_set.shape 

y = dict() 

 

y[0] = [] 

y[1] = [] 

 

for set_name in (np.array(Train_set['label']), np.array(Val_set['label']), 

np.array(Test_set['label'])): 

    y[0].append(np.sum(set_name == 'REAL')) 



    y[1].append(np.sum(set_name == 'FAKE')) 

 

trace0 = go.Bar( 

    x=['Train Set', 'Validation Set', 'Test Set'], 

    y=y[0], 

    name='REAL', 

    marker=dict(color='#33cc33'), 

    opacity=0.7 

) 

 

trace1 = go.Bar( 

    x=['Train Set', 'Validation Set', 'Test Set'], 

    y=y[1], 

    name='FAKE', 

    marker=dict(color='#ff3300'), 

    opacity=0.7 

) 

 

data = [trace0, trace1] 

 

layout = go.Layout( 

    title='Count of classes in each set', 

    xaxis={'title': 'Set'}, 

    yaxis={'title': 'Count'} 

) 

 

fig = go.Figure(data, layout) 

iplot(fig) 

plt.figure(figsize=(15,15)) 

 

for cur,i in enumerate(Train_set.index[25:50]): 

    plt.subplot(5,5,cur+1) 

    plt.xticks([]) 

    plt.yticks([]) 

    plt.grid(False) 

     

    plt.imshow(cv2.imread('../input/deepfake-

faces/faces_224/'+Train_set.loc[i,'videoname'][:-4]+'.jpg')) 

     

    if(Train_set.loc[i,'label']=='FAKE'): 

        plt.xlabel('FAKE Image') 

    else: 

        plt.xlabel('REAL Image') 

         

plt.show() 

 

def retreive_dataset(set_name): 

    images,labels=[],[] 



    for (img, imclass) in zip(set_name['videoname'], set_name['label']): 

        images.append(cv2.imread('../input/deepfake-faces/faces_224/'+img[:-

4]+'.jpg')) 

        if(imclass=='FAKE'): 

            labels.append(1) 

        else: 

            labels.append(0) 

     

    return np.array(images),np.array(labels) 

 

X_train,y_train=retreive_dataset(Train_set) 

X_val,y_val=retreive_dataset(Val_set) 

X_test,y_test=retreive_dataset(Test_set) 

 

from functools import partial 

 

tf.random.set_seed(42)  

 

DefaultConv2D = partial(tf.keras.layers.Conv2D, kernel_size=3, 

padding="same", 

                        activation="relu", kernel_initializer="he_normal") 

 

model = tf.keras.Sequential([ 

    DefaultConv2D(filters=64, kernel_size=7, input_shape=[224, 224, 3]), 

    tf.keras.layers.MaxPool2D(), 

    DefaultConv2D(filters=128), 

    DefaultConv2D(filters=128), 

    tf.keras.layers.MaxPool2D(), 

    tf.keras.layers.Flatten(), 

    tf.keras.layers.Dense(units=128, activation="relu", 

                          kernel_initializer="he_normal"), 

    tf.keras.layers.Dropout(0.5), 

    tf.keras.layers.Dense(units=64, activation="relu", 

                          kernel_initializer="he_normal"), 

    tf.keras.layers.Dropout(0.5), 

    tf.keras.layers.Dense(units=1, activation="sigmoid") 

]) 

 

model.compile(loss="binary_crossentropy", optimizer="nadam", 

              metrics=["accuracy"]) 

model.summary() 

 

history = model.fit(X_train, y_train, epochs=5,batch_size=64, 

                    validation_data=(X_val, y_val)) 

 

score = model.evaluate(X_test, y_test) 

 

# plot model performance 



acc = history.history['accuracy'] 

val_acc = history.history['val_accuracy'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

epochs_range = range(1, len(history.epoch) + 1) 

 

plt.figure(figsize=(15,5)) 

 

plt.subplot(1, 2, 1) 

plt.plot(epochs_range, acc, label='Train Set') 

plt.plot(epochs_range, val_acc, label='Val Set') 

plt.legend(loc="best") 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.title('Model Accuracy') 

 

plt.subplot(1, 2, 2) 

plt.plot(epochs_range, loss, label='Train Set') 

plt.plot(epochs_range, val_loss, label='Val Set') 

plt.legend(loc="best") 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.title('Model Loss') 

 

plt.tight_layout() 

plt.show() 

 

train_set_raw=tf.data.Dataset.from_tensor_slices((X_train,y_train)) 

valid_set_raw=tf.data.Dataset.from_tensor_slices((X_val,y_val)) 

test_set_raw=tf.data.Dataset.from_tensor_slices((X_test,y_test)) 

 

tf.keras.backend.clear_session()  # extra code – resets layer name counter 

 

batch_size = 32 

preprocess = tf.keras.applications.xception.preprocess_input 

# Find out the most accurate images for the sequence  

train_set = train_set_raw.map(lambda X, y: (preprocess(tf.cast(X, tf.float32)), 

y)) 

train_set = train_set.shuffle(1000, seed=42).batch(batch_size).prefetch(1) 

valid_set = valid_set_raw.map(lambda X, y: (preprocess(tf.cast(X, tf.float32)), 

y)).batch(batch_size) 

test_set = test_set_raw.map(lambda X, y: (preprocess(tf.cast(X, tf.float32)), 

y)).batch(batch_size) 

 

# extra code – displays the first 9 images in the first batch of valid_set 

plt.figure(figsize=(12, 12)) 

for X_batch, y_batch in valid_set.take(1): 

    for index in range(9): 



        plt.subplot(3, 3, index + 1) 

        plt.imshow((X_batch[index] + 1) / 2)  # rescale to 0–1 for imshow() 

        if(y_batch[index]==1): 

            classt='FAKE' 

        else: 

            classt='REAL' 

        plt.title(f"Class: {classt}") 

        plt.axis("off") 

 

plt.show() 

 

data_augmentation = tf.keras.Sequential([ 

    tf.keras.layers.RandomFlip(mode="horizontal", seed=42), 

    tf.keras.layers.RandomRotation(factor=0.05, seed=42), 

    tf.keras.layers.RandomContrast(factor=0.2, seed=42) 

]) 

 

# extra code – displays the same first 9 images, after augmentation 

plt.figure(figsize=(12, 12)) 

for X_batch, y_batch in valid_set.take(1): 

    X_batch_augmented = data_augmentation(X_batch, training=True) 

    for index in range(9): 

        plt.subplot(3, 3, index + 1) 

        # We must rescale the images to the 0-1 range for imshow(), and also 

        # clip the result to that range, because data augmentation may 

        # make some values go out of bounds (e.g., RandomContrast in this 

case). 

        plt.imshow(np.clip((X_batch_augmented[index] + 1) / 2, 0, 1)) 

        if(y_batch[index]==1): 

            classt='FAKE' 

        else: 

            classt='REAL' 

        plt.title(f"Class: {classt}") 

        plt.axis("off") 

 

plt.show() 

 

tf.random.set_seed(42)  # extra code – ensures reproducibility 

base_model = tf.keras.applications.xception.Xception(weights="imagenet", 

                                                     include_top=False) 

avg = tf.keras.layers.GlobalAveragePooling2D()(base_model.output) 

output = tf.keras.layers.Dense(1, activation="sigmoid")(avg) 

model = tf.keras.Model(inputs=base_model.input, outputs=output) 

 

for layer in base_model.layers: 

    layer.trainable = False 

 

optimizer = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9) 



model.compile(loss="binary_crossentropy", optimizer=optimizer, 

              metrics=["accuracy"]) 

history = model.fit(train_set, validation_data=valid_set, epochs=3) 

 

for indices in zip(range(33), range(33, 66), range(66, 99), range(99, 132)): 

    for idx in indices: 

        print(f"{idx:3}: {base_model.layers[idx].name:22}", end="") 

    print() 

 

model.evaluate(test_set) 

 

for layer in base_model.layers[56:]: 

    layer.trainable = True 

 

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9) 

model.compile(loss="binary_crossentropy", optimizer=optimizer, 

              metrics=["accuracy"]) 

history = model.fit(train_set, validation_data=valid_set, epochs=10) 

 

# plot model performance 

acc = history.history['accuracy'] 

val_acc = history.history['val_accuracy'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

epochs_range = range(1, len(history.epoch) + 1) 

 

plt.figure(figsize=(15,5)) 

 

plt.subplot(1, 2, 1) 

plt.plot(epochs_range, acc, label='Train Set') 

plt.plot(epochs_range, val_acc, label='Val Set') 

plt.legend(loc="best") 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.title('Model Accuracy') 

 

plt.subplot(1, 2, 2) 

plt.plot(epochs_range, loss, label='Train Set') 

plt.plot(epochs_range, val_loss, label='Val Set') 

plt.legend(loc="best") 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.title('Model Loss') 

 

plt.tight_layout() 

plt.show() 

 

train_set_raw=tf.data.dataset.from_tensor_slices((x_train,y_train)) 



valid_set_raw=tf.data.dataset.from_tensor_slices((x_val,y_val)) 

test_set_raw=tf.data.dataset.from_tensor_slices((x_test,y_test)) 

tf.keras.backend.clear_session() #extra code_rests layer name counter 

batch_size=32 

#find out the most accurate images for the sequence 

preprocess=tf.keras.applications.xception.preprocess-input 

train_set=train_set_raw.map(lambda X,y:(preprocess(tf.cast (X,tf.float32)) ,y)      

train_set=train_set.shuffle(1000,seed=42),batch(batch_size),prefetch(1) 

valid_set=valid_set_raw.map(lambda X,y:(preprocess(tf.cast 

(X,tf.float32)),y).batch(batch_size)  

test_set=test_set_raw.map(lambda X,y:(preprocess(tf.cast 

(X,tf.float32)),y).batch(batch_size) 

#extra code_displays the first 9 images in the first batch of valid_set 

first batch of valid_set 

plt.figure(figsize=(12,12)) 

     for x_batch,y_batch in valid_set.take(1): 

     for index in range(9): 

     plt.subpplot(3,3,index+1) 

     plt.imshow((x_batch[index]+1)/2) #rescale to 0-1 for imshow() 

       if(y_batch[index]==1): 

          classt='FAKE' 

     else: 

        classt='REAL' 

 plt.title(f"class:{classt}") 

 plt.axis("off") 

 plt show() 

                 

data_augumentation=tf.kras.sequential([tf.keras.layers.Random 

Flip(mode="horizontal",seed=42), 

                                     tf.keras.layers.Random Rotation 

Flip(factor=0.05,seed=42) 

                                     tf.keras.layers.Random contrast 

Flip(factor=0.2,seed=42)]) 

             

  #extra code_displays the same first 9 images,after augumentation 

                          plt.figure(figsize=(12,12)) 

for X_batch,Y_batch in valid set.take(1): 

    X_batch-Y_augumented=data_augumentation(X_batch,training=True) 

        for index in range(9): 

            plt.subplot(3,3,index +1) 

    #we must rescale the images to the 0-1 range for imshow(),and also 

    # make some values go out of bound(e.g.,Random contrast in this case). 

if(Y_batch[index]==1) 

    classt='FAKE' 

else: 

    classt='REAL' 

plt.title(f"class:{classt}") 

plt.axis("off") 



plt.show() 

tf.random.set_seed(42) #extra code_ensure reproducibility 

base_model=tf.keras.applications.xception(weights="imagenet",include_top=F

alse) 

avg=tf.keras.layers.GlobalAverage pooling 2D()(base_model.output) 

output=tf.keras.layers.Dense(1,activation="sigmoid")(avg) 

model=tf.keras.Model(inputs=base_model.input,output=output) 

        for layers in base_model.layers: 

                          layers.trainable=False 

                           

optimizer=tf.keras.optimizers.SGD(learning_rate=0.1,momentum=0.9) 

model.compile(loss="binary_crossentropy"optimizer=optimizer,metrics=["acc

uracy"]) 

history=model.fit(train_set,validation_data=valid_set,epochs=3) 

for indices in zip(range(33)range(33,66),range(66,99),range(99,132)): 

    for idx in indices: 

      print (f"{idx:3}:{base_model.layers[index].name:22}",end="") 

print() 

model.evaluate(test_set) 

for layer in base_model.layers[56:] 

  layer.trainable=True 

optimizer=tf.keras.optimizers.SGP(learning_rate=0.01,momentum=0.9) 

model.compile(loss="binary_crossentropy"optimizer=optimizer,metrics=["acc

uracy"]) 

history=model.fit(train_set,validation_data=valid_set,epochs=10)  

#plot model performance 

acc=history.history['accuracy'] 

val_acc=history.history['val_accuracy'] 

loss=history.history['loss'] 

val_loss=history.history['val_loss'] 

epochs_range=range(1,len(history.epoch)+1) 

plt.figure(figsize=(15,5)) 

 

plt.subplot(1, 2, 1) 

plt.plot(epochs_range, acc, label='Train Set') 

plt.plot(epochs_range, val_acc, label='Val Set') 

plt.legend(loc="best") 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.title('Model Accuracy') 

 

plt.subplot(1, 2, 2) 

plt.plot(epochs_range, loss, label='Train Set') 

plt.plot(epochs_range, val_loss, label='Val Set') 

plt.legend(loc="best") 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.title('Model Loss') 



 

plt.tight_layout() 

plt.show() 

 

model.evaluate(test_set)                           


