
#importing libraries
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer,
TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

#loading the data
data = pd.read_csv('/content/spam.csv', encoding='ISO-8859-1')

#displaying first five elements
data.head()

 v1 v2 Unnamed: 2
\
0 ham Go until jurong point, crazy.. Available only ... NaN

1 ham Ok lar... Joking wif u oni... NaN

2 spam Free entry in 2 a wkly comp to win FA Cup fina... NaN

3 ham U dun say so early hor... U c already then say... NaN

4 ham Nah I don't think he goes to usf, he lives aro... NaN

 Unnamed: 3 Unnamed: 4
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

#displaying the last five elements
data.tail()

 v1 v2 Unnamed:
2 \
5567 spam This is the 2nd time we have tried 2 contact u...
NaN
5568 ham Will Ì_ b going to esplanade fr home?
NaN
5569 ham Pity, * was in mood for that. So...any other s...
NaN
5570 ham The guy did some bitching but I acted like i'd...
NaN
5571 ham Rofl. Its true to its name
NaN

 Unnamed: 3 Unnamed: 4
5567 NaN NaN
5568 NaN NaN
5569 NaN NaN
5570 NaN NaN
5571 NaN NaN

data = data[['v1', 'v2']]

#renaming the columns
data.columns = ['label', 'text']

data.head()

 label text
0 ham Go until jurong point, crazy.. Available only ...
1 ham Ok lar... Joking wif u oni...
2 spam Free entry in 2 a wkly comp to win FA Cup fina...
3 ham U dun say so early hor... U c already then say...
4 ham Nah I don't think he goes to usf, he lives aro...

converting labels to 1 for spam, 0 for not spam
data['label'] = (data['label'] == 'spam').astype(int)

data.head()

 label text
0 0 Go until jurong point, crazy.. Available only ...
1 0 Ok lar... Joking wif u oni...
2 1 Free entry in 2 a wkly comp to win FA Cup fina...
3 0 U dun say so early hor... U c already then say...
4 0 Nah I don't think he goes to usf, he lives aro...

split the dataset into training and testing sets
X = data['text']
y = data['label']
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

creating bow and TF-IDF representations
vectorizer_bow = CountVectorizer()
X_train_bow = vectorizer_bow.fit_transform(X_train)
X_test_bow = vectorizer_bow.transform(X_test)

vectorizer_tfidf = TfidfVectorizer()
X_train_tfidf = vectorizer_tfidf.fit_transform(X_train)
X_test_tfidf = vectorizer_tfidf.transform(X_test)

training naive bayes classifiers
nb_bow = MultinomialNB()
nb_tfidf = MultinomialNB()

nb_bow.fit(X_train_bow, y_train)
nb_tfidf.fit(X_train_tfidf, y_train)

MultinomialNB()

#making predictions
y_pred_bow = nb_bow.predict(X_test_bow)
y_pred_tfidf = nb_tfidf.predict(X_test_tfidf)

#calculating accuracy
accuracy_bow = accuracy_score(y_test, y_pred_bow)
accuracy_tfidf = accuracy_score(y_test, y_pred_tfidf)

print(f'Accuracy (BoW): {accuracy_bow}')
print(f'Accuracy (TF-IDF): {accuracy_tfidf}')

Accuracy (BoW): 0.9838565022421525
Accuracy (TF-IDF): 0.9623318385650225

By implementing Bag of Words and TF-IDF representations with a Naive Bayes classifier, we
achieved an accuracy rate of around 98 percent that allowed us to distinguish between spam
and non-spam SMS messages. On caluculating accuracy we noticed about the model
performance.It has high accuracy rate

