#importing libraries
import pandas as pd
import numpy as np
from sklearn.feature extraction.text import CountVectorizer,
TfidfVectorizer
from sklearn.naive bayes import MultinomialNB

from sklearn.model selection import train test split
from sklearn.metrics import accuracy score

#loading the data

data = pd.read csv('/content/spam.csv', encoding='IS0-8859-1")
#displaying first five elements
data.head()
vl v2 Unnamed: 2
\
© ham Go until jurong point, crazy.. Available only ... NaN
1 ham Ok lar... Joking wif u oni... NaN
2 spam Free entry in 2 a wkly comp to win FA Cup fina... NaN
3 ham U dun say so early hor... U c already then say... NaN
4 ham Nah I don't think he goes to usf, he lives aro... NaN
Unnamed: 3 Unnamed: 4
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
#displaying the last five elements
data.tail()
vl v2 Unnamed:
2\
5567 spam This is the 2nd time we have tried 2 contact u...
NaN
5568 ham Will I b going to esplanade fr home?
NaN
5569 ham Pity, * was in mood for that. So...any other s...
NaN
5570 ham The guy did some bitching but I acted like i'd...
NaN
5571 ham Rofl. Its true to its name

NaN

Unnamed: 3 Unnamed: 4

5567 NaN NaN
5568 NaN NaN
5569 NaN NaN
5570 NaN NaN
5571 NaN NaN

data = data[['vl', 'v2']]

#renaming the columns
data.columns = ['label', 'text']

data.head()

label text
O ham Go until jurong point, crazy.. Available only ...
1 ham Ok lar... Joking wif u oni...
2 spam Free entry in 2 a wkly comp to win FA Cup fina...
3 ham U dun say so early hor... U c already then say...
4 ham Nah I don't think he goes to usf, he lives aro...

converting labels to 1 for spam, @ for not spam
data['label'] = (data['label'] == 'spam').astype(int)

data.head()

label text
© Go until jurong point, crazy.. Available only ...
0 Ok lar... Joking wif u oni...
1 Free entry in 2 a wkly comp to win FA Cup fina...
© U dun say so early hor... U c already then say...
®© Nah I don't think he goes to usf, he lives aro...

split the dataset into training and testing sets

data['text']

datal[' label']

_train, X test, y train, y test = train test split(X, vy,
test size=0.2, random state=42)

X< X#H hPwWNRHOO

creating bow and TF-IDF representations
vectorizer bow = CountVectorizer()

X train_bow = vectorizer bow.fit transform(X train)
X test bow = vectorizer bow.transform(X test)

vectorizer tfidf = TfidfVectorizer()
X train_tfidf = vectorizer tfidf.fit transform(X train)
X test tfidf = vectorizer tfidf.transform(X test)

training naive bayes classifiers
nb bow = MultinomialNB()
nb_tfidf = MultinomialNB()

nb bow.fit(X train bow, y train)
nb_tfidf.fit(X train tfidf, y train)

MultinomialNB()

#making predictions
y pred bow = nb bow.predict(X test bow)
y pred tfidf = nb tfidf.predict(X test tfidf)

#calculating accuracy
accuracy bow = accuracy score(y test, y pred bow)
accuracy tfidf = accuracy score(y test, y pred tfidf)

print(f'Accuracy (BoW): {accuracy bow}')
print(f'Accuracy (TF-IDF): {accuracy tfidf}')

Accuracy (BoW): 0.9838565022421525
Accuracy (TF-IDF): 0.9623318385650225

By implementing Bag of Words and TF-IDF representations with a Naive Bayes classifier, we
achieved an accuracy rate of around 98 percent that allowed us to distinguish between spam
and non-spam SMS messages. On caluculating accuracy we noticed about the model
performance.lt has high accuracy rate

