
Real-Time Network Traffic Monitoring System
PROJECT REPORT

Submitted in the partial fulfilment of the requirements for award of the

Six Months Online Certificate Course

in

CYBER SECURITY
Course Duration: [25-01-2024 to 24-07-2024]

By

Habeeb ur Rahman MD (Ht. No.2406CYS120)

Under the Esteemed Guidance Prof. P PENCHALAIAH

DIRECTORATE OF INNOVATIVE LEARNING & TEACHING
(DILT)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
(Formerly SCDE_SCHOOL OF CONTINUING AND DISTANCE EDUCATION)

Kukatpally, Hyderabad, Telangana State, INDIA- 500 085

JULY 2024



2

ABSTRACT

The Real-Time Network Traffic Monitoring System (RTNTMS) is a comprehensive
solution designed to provide real-time insights into network traffic patterns and
anomalies. In today’s interconnected world, where network security and
performance are paramount, the ability to monitor and analyze network traffic in
real-time is crucial. RTNTMS employs advanced data collection techniques and
analysis algorithms to monitor incoming and outgoing network packets, identify
potential security threats, detect abnormal behavior, and optimize network
performance. The system offers a user-friendly interface for administrators to
visualize network traffic data, set alerts for suspicious activities, and take proactive
measures to safeguard the network. By leveraging the power of real-time analytics,
RTNTMS empowers organizations to enhance their network security posture,
improve operational efficiency, and ensure a seamless user experience. This project
serves as a valuable tool for network administrators, cybersecurity professionals, and
organizations seeking to fortify their network infrastructure in today’s dynamic
digital landscape.



3

TABLE OF CONTENTS

Chapter
No.

Chapter Name Page No.

1 Introduction 4
2 Literature Survey 15
3 Problem Statement 19
4 Objectives 21
5 Methodology 23
6 Algorithm 25
7 Implementation 28
8 Results & analysis 32
9 Conclusion 35
10 Future Scope 36
11 References 37



4

CHAPTER1

Introduction

1. History of Networking

1.1 Early Beginnings

The concept of networking dates back to the 1960s with the inception of ARPANET (Advanced
Research Projects Agency Network). Funded by the U.S. Department of Defense, ARPANET
aimed to connect computers across geographically separated locations, facilitating communication
and resource sharing. ARPANET used packet switching, a method of grouping data into packets
for transmission, which laid the groundwork for modern network protocols.

1.2 Development of Ethernet and TCP/IP

In the 1970s and 1980s, Ethernet and TCP/IP emerged as critical technologies. Ethernet, developed
by Xerox PARC, provided a standard for connecting devices in a local area network (LAN). It
enabled high-speed data transfer over coaxial cables and later twisted pair and fiber optics. TCP/IP,
a suite of communication protocols, was developed to standardize data exchange over
interconnected networks, forming the backbone of the internet.

1.3 The World Wide Web

The early 1990s saw the development of the World Wide Web by Tim Berners-Lee. This
innovation transformed the internet from a primarily academic and government tool into a global
information-sharing platform accessible to the general public. The introduction of web browsers
and HTML (Hypertext Markup Language) enabled the creation of user-friendly websites,
accelerating the internet's growth and utility.

1.4 Modern Networking

Today, networking encompasses a wide range of technologies, including wireless communication,
broadband internet, and cloud computing. Wireless networking, enabled by Wi-Fi and cellular
technologies, allows devices to connect without physical cables, providing mobility and
convenience. Broadband internet offers high-speed data transmission, supporting
bandwidth-intensive applications such as streaming and online gaming. Cloud computing
leverages remote servers to store, manage, and process data, enabling scalable and flexible IT
resource.

2. Importance of Networking



5

2.1 Facilitating Communication

Networking enables seamless communication between individuals and organizations, supporting
various forms of interaction such as emails, instant messaging, voice calls, and video conferencing.
This connectivity fosters collaboration, enhances productivity, and enables real-time
decision-making.

2.2 Resource Sharing

Networks allow multiple devices to share resources such as files, printers, and internet
connections. This shared access reduces costs, improves efficiency, and simplifies management by
centralizing resources. For example, a single printer can serve multiple computers in an office,
eliminating the need for individual printers for each device.

2.3 Data Exchange and Collaboration

Networking facilitates the transfer of data between devices, essential for business operations,
scientific research, and personal use. It supports collaborative work by allowing multiple users to
access and work on the same data simultaneously. For instance, cloud-based collaboration tools
enable teams to edit documents, share files, and communicate in real-time, regardless of their
physical location.

2.4 Remote Access

Networking allows remote access to systems and data, enabling telecommuting and remote
administration. Employees can work from anywhere with internet access, increasing flexibility and
reducing the need for physical office space. Remote administration tools enable IT professionals to
manage and troubleshoot systems without being physically present, enhancing operational
efficiency.

2.5 Enhancing Security

Properly configured networks provide security features such as firewalls, encryption, and access
controls to protect data from unauthorized access. Firewalls monitor and control incoming and
outgoing network traffic based on security rules, while encryption scrambles data to make it
unreadable to unauthorized users. Access controls restrict network access to authorized users,
ensuring data confidentiality and integrity.



6

3. Possible Cyber Attacks on Networks

3.1 Denial of Service (DoS) Attacks

DoS attacks aim to overwhelm a network or server with excessive traffic, rendering it unavailable
to legitimate users. Attackers flood the target with a massive volume of requests, exhausting its
resources and causing service disruptions. Distributed Denial of Service (DDoS) attacks involve
multiple compromised systems, amplifying the attack's impact.

3.2 Man-in-the-Middle (MitM) Attacks

In MitM attacks, attackers intercept and potentially alter communication between two parties
without their knowledge. By positioning themselves between the victim and the intended recipient,
attackers can eavesdrop on conversations, steal sensitive information, or inject malicious data.
These attacks exploit weaknesses in network protocols and encryption.

3.3 Phishing

Phishing attacks involve tricking users into revealing sensitive information, such as login
credentials or financial details, by posing as a legitimate entity. Attackers use emails, websites, or
instant messages to lure victims into providing confidential data. Spear phishing, a targeted variant,
focuses on specific individuals or organizations, often using personalized information to increase
credibility.

3.4 Malware

Malware is malicious software designed to infiltrate and damage computer systems or steal data.
Common types of malwares include viruses, worms, ransomware, and spyware. Viruses attach to
legitimate programs and spread when the infected program is executed, while worms replicate
themselves and spread across networks. Ransomware encrypts data and demands payment for its
release, and spyware monitors user activity to gather sensitive information.

3.5 SQL Injection

SQL injection attacks exploit vulnerabilities in web applications to execute malicious SQL queries,
accessing or modifying data in a database. Attackers manipulate input fields, such as login forms or
search boxes, to inject malicious SQL code, bypassing authentication and gaining unauthorized
access to sensitive data.



7

3.6 Eavesdropping

Eavesdropping involves unauthorized interception of data transmitted over a network. Attackers
use packet sniffing techniques to capture and analyze network traffic, potentially gaining access to
sensitive information such as login credentials, financial data, or personal communications.
Encryption and secure communication protocols can mitigate the risk of eavesdropping.

4. What is Packet Sniffing?

4.1 Definition and Purpose

Packet sniffing is the process of capturing, analyzing, and interpreting network packets as they
traverse a network. Network packets are small units of data transmitted over a network, containing
information such as source and destination addresses, protocol type, and payload. Packet sniffing
allows network administrators to monitor and analyze network traffic, identify issues, and optimize
performance.

4.2 How Packet Sniffing Works

Packet sniffing involves intercepting network packets and examining their contents. This can be
done using hardware devices or software tools. The captured packets are stored for analysis,
providing insights into network behavior and performance. Packet sniffers operate in promiscuous
mode, allowing them to capture all packets on a network segment, regardless of the intended
recipient.

4.3 Applications of Packet Sniffing

Packet sniffing has various applications, including network troubleshooting, performance analysis,
and security monitoring. It helps network administrators identify and resolve issues such as
network congestion, protocol errors, and configuration problems. In security monitoring, packet
sniffing is used to detect potential threats, such as unauthorized access, malware infections, and
data exfiltration.

5. Packet Sniffing

5.1 Early Packet Sniffing Tools

The concept of packet sniffing dates back to the early days of networking. In the 1980s, as
networks became more complex, there was a growing need for tools to monitor and analyze
network traffic. Early packet sniffers were rudimentary and often required specialized hardware.
These tools were primarily used by network engineers and researchers to understand network
behavior and diagnose issues.



8

5.2 Development of Tcpdump

In the late 1980s, Tcpdump was developed by Van Jacobson, Craig Leres, and Steven McCanne at
the Lawrence Berkeley National Laboratory. Tcpdump is a command-line packet analyzer that
captures and displays network packets in real-time. It became one of the first widely-used packet
sniffing tools, providing a powerful yet accessible means of analyzing network traffic. Tcpdump's
open-source nature allowed for continuous development and improvement by the networking
community.

5.3 Emergence of Wireshark

In the 2000s, Gerald Combs developed Ethereal, which was later renamed Wireshark. Wireshark
revolutionized packet sniffing by providing a graphical user interface (GUI) that simplified the
process of capturing and analyzing network packets. Its extensive protocol support, advanced
filtering capabilities, and user-friendly interface made it the tool of choice for network
administrators, security analysts, and researchers. Wireshark's open-source model ensured
continuous enhancements and updates, keeping it at the forefront of network analysis tools.

6. Types of Packet Sniffing

6.1 Passive Sniffing

Passive sniffing involves capturing packets from a network without altering the data or interfering
with network operations. It is typically used in environments where data is transmitted over a
shared medium, such as Ethernet hubs.

6.1.1 How Passive Sniffing Works

In passive sniffing, the sniffer listens to all traffic passing through the network and captures packets
for analysis. The captured packets are stored and analyzed to understand network behavior,
identify issues, and optimize performance.

6.1.2 Advantages of Passive Sniffing

Non-Intrusive: Passive sniffing does not affect network performance or alter data.

Stealthy: It is difficult for attackers to detect passive sniffing, making it suitable for monitoring and
security purposes.

Comprehensive: Passive sniffing can capture all traffic on a shared medium, providing a complete
view of network activity.



9

6.1.3 Disadvantages of Passive Sniffing

Limited to Shared Mediums: Passive sniffing is effective only on networks with shared mediums,
such as hubs or broadcast domains.

Switched Networks: On switched networks, passive sniffing cannot capture packets not destined
for the sniffer's network interface without additional techniques.

6.2 Active Sniffing

Active sniffing involves actively interacting with the network to capture packets. This can include
techniques such as Address Resolution Protocol (ARP) spoofing, MAC flooding, or port mirroring
on switches.

6.2.1 How Active Sniffing Works

In active sniffing, the sniffer sends packets or manipulates network behavior to capture traffic. For
example, ARP spoofing involves sending fake ARP messages to associate the attacker's MAC
address with the IP address of a legitimate device, intercepting its traffic.

6.2.2 Advantages of Active Sniffing

Capture on Switched Networks: Active sniffing can capture packets on switched networks, where
passive sniffing is ineffective.

Comprehensive Analysis: It provides a more complete view of network traffic and can capture
packets from all devices on the network segment.

6.2.3 Disadvantages of Active Sniffing

Intrusive: Active sniffing can affect network performance and alter data, potentially causing
disruptions.

Detectable: It is easier for attackers to detect active sniffing, making it less suitable for stealthy
monitoring.

7. Introduction to Wireshark

Wireshark is a free and open-source network protocol analyzer, regarded as the most widely used
tool for network traffic analysis. Its popularity stems from its powerful features, user-friendly
interface, and extensive protocol support. Developed initially as Ethereal by Gerald Combs in
1998, it was renamed Wireshark in 2006 due to trademark issues. Over the years, Wireshark has
evolved into a comprehensive tool with contributions from a global community of developers.



10

7.1 History and Development

Early Days Gerald Combs developed Wireshark (originally named Ethereal) while working at a
small ISP (Internet Service Provider). Combs needed a tool to troubleshoot network problems, but
existing tools were either too expensive or lacked the necessary features. This motivated him to
create his own network analyzer. Ethereal's initial release in 1998 quickly gained traction among
network administrators and security professionals due to its robustness and flexibility.

Renaming and Growth

In 2006, the project was renamed Wireshark due to trademark issues. The renaming did not hinder
its growth; instead, it marked a new era of development and expansion. Wireshark's open-source
nature allowed for continuous enhancements and updates, ensuring it stayed at the forefront of
network analysis tools. The global community of contributors has expanded its capabilities, added
support for new protocols, and improved its usability.

Supported Platforms

7.2 Wireshark is available for multiple operating systems, ensuring broad accessibility:

Windows: Wireshark provides a Windows installer that includes the necessary libraries and
components for seamless installation.

macOS: macOS users can download a dedicated installer package, which integrates Wireshark
with the native operating system.

Linux: Wireshark is available through various package managers (e.g., APT for Debian-based
distributions, YUM for Red Hat-based distributions) or can be compiled from source for
customized installations.

7.3 Features of Wireshark

Wireshark offers a plethora of features, making it a powerful and versatile tool for network
analysis:

7.2.1 Packet Capture

Wireshark captures live network traffic from multiple network interfaces, including Ethernet,
Wi-Fi, and Bluetooth. It supports capturing data from both local and remote networks, providing
flexibility for various use cases.



11

7.2.2 Detailed Packet Analysis

Wireshark provides a detailed breakdown of each packet, including headers, payload, and protocol
information. Users can inspect every aspect of a packet, from its source and destination addresses
to the data it carries. This granularity allows for in-depth analysis and troubleshooting.

7.2.3 Filtering Capabilities

Wireshark's filtering capabilities are among its most powerful features:

Display Filters: Allow users to view only the packets of interest based on criteria such as IP
address, protocol type, or port number. Display filters are highly flexible and support complex
expressions.

Capture Filters: Limit the packets captured to those that meet specific conditions, reducing the
volume of data for analysis. Capture filters use a syntax similar to Tcpdump, providing a familiar
interface for experienced users.

Color Coding

Packets in Wireshark are color-coded based on protocol type, making it easier to identify different
types of traffic at a glance. Users can customize color rules to highlight specific packets or patterns,
enhancing the visual representation of captured data.

Protocol Decoding

Wireshark supports an extensive number of protocols and can decode and display their data. It
provides detailed information about each protocol layer, helping users understand the structure and
content of network traffic. Wireshark's protocol decoders are continually updated to support new
and emerging protocols.

Statistical Tools

Wireshark offers various statistical tools to analyze traffic patterns, protocol usage, and network
performance:

Protocol Hierarchy: Displays the distribution of protocols in the captured traffic, providing insights
into protocol usage.

Endpoint Statistics: Shows statistics for network endpoints, such as IP addresses and ports, helping
identify active devices and their communication patterns.

IO Graphs: Visualize network traffic over time, aiding in the identification of trends and
anomalies.



12

Export Options

Captured data can be exported in multiple formats for further analysis or reporting. Wireshark
supports export to text, CSV, XML, and other formats, facilitating data sharing and integration
with other tools. This flexibility ensures that captured data can be used across different platforms
and applications.

Using Wireshark

Using Wireshark involves several steps, from installation to capturing and analyzing network
traffic:

Installation

Wireshark can be downloaded and installed from the official website (www.wireshark.org). The
installation process is straightforward, with platform-specific instructions provided for Windows,
macOS, and Linux. The installer packages include all necessary components, such as libraries and
dependencies, ensuring a smooth setup experience.

Capturing Traffic

To capture network traffic, users select the network interface they want to monitor and start the
capture process. Wireshark displays the captured packets in real-time, providing immediate
insights into network activity. Users can stop the capture at any time and save the data for later
analysis.

Applying Filters

Filters are essential for focusing on specific traffic of interest. Wireshark offers two types of filters:

Display Filters: Refine the view of captured packets based on criteria such as IP address, protocol
type, or port number. Display filters are highly flexible and support complex expressions, enabling
precise filtering of traffic.

Capture Filters: Limit the packets captured to those that meet certain conditions, reducing the
volume of data for analysis. Capture filters use a syntax similar to Tcpdump, providing a familiar
interface for experienced users.

Analyzing Packets

Captured packets are displayed in a list, and users can click on individual packets to view detailed
information. The packet details pane shows the structure of each packet, including headers and
payload. The packet bytes pane displays the raw data in hexadecimal and ASCII formats, allowing
for in-depth analysis.



13

Saving Captures

Capture files can be saved in Wireshark's native format (.pcapng) or exported to other formats for
further analysis. Saved captures can be opened later, shared with colleagues, or imported into other
tools for additional processing.

Practical Applications of Wireshark

Wireshark has numerous practical applications in various fields, from network troubleshooting to
security analysis and protocol development:

Network Troubleshooting

Network administrators use Wireshark to diagnose and resolve network issues. By analyzing
captured packets, they can identify problems such as network congestion, protocol errors, and
configuration issues. Wireshark helps pinpoint the root cause of network problems, facilitating
quick and effective resolution.

Security Analysis

Wireshark is a valuable tool for security analysts in identifying potential threats and vulnerabilities.
It can detect unusual traffic patterns, unauthorized access attempts, and malware activity. Security
professionals use Wireshark to investigate security incidents, analyze attack vectors, and develop
mitigation strategies.

Protocol Development

Developers use Wireshark to test and debug network protocols during development. By capturing
and analyzing traffic generated by their applications, they can verify protocol compliance, identify
bugs, and optimize performance. Wireshark's extensive protocol support and detailed analysis
capabilities make it an essential tool for protocol development.

Educational Purposes

Wireshark is widely used in academic settings to teach students about network protocols and traffic
analysis. It provides a hands-on learning experience, allowing students to explore real network
traffic and understand the intricacies of protocol behavior. Educators use Wireshark to demonstrate
networking concepts and practical troubleshooting techniques.

Advanced Features of Wireshark

Wireshark also offers several advanced features for more in-depth analysis and specialized use
cases:



14

Protocol Dissector Plugins

Wireshark supports custom protocol dissector plugins, allowing users to extend its functionality
and add support for proprietary or custom protocols. Developers can create plugins in C or Lua,
integrating seamlessly with Wireshark's existing protocol decoders.

Remote Packet Capture

Wireshark can capture traffic from remote network interfaces using the Remote Packet Capture
Protocol (RPCAP). This feature is useful for monitoring network segments that are not directly
accessible from the user's machine. RPCAP allows Wireshark to capture traffic over the network,
providing flexibility for distributed network environments.

Decryption Support

Wireshark can decrypt encrypted traffic, such as SSL/TLS, if the necessary keys are available. This
capability is crucial for analyzing secure communication channels and identifying potential
security issues. Wireshark supports several methods for decrypting SSL/TLS traffic, including key
logging, RSA private keys, and pre-master secret keys.

Custom Profiles

Wireshark allows users to create custom profiles, which include personalized settings, filters, and
color rules. Custom profiles enable users to tailor Wireshark to their specific needs and workflows,
enhancing productivity and efficiency.



15

CHAPTER 2

Literature Survey

1. Bindu Dodiya. et al. [1] developed a method with the utilization of Wireshark, an
efficient open-source packet analysis tool, for tracing and categorizing various
attack signatures in network forensics. Wireshark's ability to capture live data at a
microscopic level allowed administrators to identify malicious online behavior,
detect data breaches, and reveal indicators of compromise for malware. The
advantage lay in Wireshark's comprehensive analysis, providing a detailed
understanding of network packets and enabling proactive measures to enhance
cybersecurity. However, despite its effectiveness in uncovering a wide range of
security threats, Wireshark had limitations as it lacked intrusion detection
capabilities. Unlike dedicated systems, Wireshark did not offer real-time warnings
or actively prevent unauthorized activities, underscoring the importance of
implementing complementary security measures for proactive threat detection and
response.

2. Giovanni Barbieri. et al. [2] implemented a comparative analysis method,
contrasting Shodan-only assessments with large-scale traffic analysis at an Internet
Exchange Point (IXP) via sFlow sampling. This approach, utilizing sFlow sampling,
allowed the identification of Industrial Control Systems (ICS) endpoints engaged in
genuine industrial traffic, overcoming Shodan's limitations. The methodology not
only detected scanning activities but also differentiated between industrial and IT
traffic, providing a more comprehensive understanding of insecure industrial
protocol usage. Despite its advantage, the study's limitation was the reliance on a
31-day sampled traffic capture, potentially missing transient industrial traffic
patterns. Furthermore, while effective in identifying legitimate industrial traffic, the
proposed analytic framework might not address real-time threats or evolving cyber
threats adequately, potentially limiting its immediate threat detection capabilities.

3. Muhammad Farrid Affiq Harirul Kamal. et al. [3] developed a dynamic Android
botnet detection method using network analysis, offering real-time insights into
application behavior. Extracting five features from Wireshark and SSL Packet
Capture, the approach demonstrated promising accuracy, ROC value, and low FP
value when tested with the Artificial Neural Network (ANN) algorithm. However,



16

the study's limitation was its reliance on datasets from APKPure, Github, and
Koodous, potentially limiting the representation of diverse Android applications and
botnet behaviors. Despite achieving positive results, the proposed network traffic
features may have had constraints in capturing nuanced variations in Android botnet
characteristics, suggesting the need for further refinement and exploration in
subsequent research.

4. Sujith Bebortta. et al. [4] implemented a method addressing the challenge of
network traffic administration for diverse IoT devices. The focus was on efficiently
characterizing inter-arrival rates through packet-level and flow-level analysis,
facilitating the crucial identification and management of IoT devices for stable
network activities and enhanced cybersecurity. The approach provided a precise
understanding of network flows and insights into the strengths, weaknesses, and
future scopes of state-of-the-art technologies for managing the expanding IoT
landscape. However, a limitation emerged in the absence of specific details on
proactive measures for identifying and isolating network vulnerabilities, warranting
further exploration in subsequent research.

5. Ali Siddiqui. et al. [5] developed a method utilizing Wireshark as a network protocol
analyzer for forensic analysis on network security attacks. Wireshark facilitated
ethical hackers in collecting and analyzing data to uncover evidence of network
intrusions, exposing vulnerabilities in cyber security at the user level. The advantage
of Wireshark's functionality as a sniffing network tool allowed live capture and
breakdown of network transmissions and various packets. This facilitated a detailed
analysis of protocols like HTTP, TCP, and UDP, enhancing the understanding of
network activity and identification of website vulnerabilities. However, a limitation
in this work was the focus on classifying websites as secure or vulnerable solely
based on Wireshark's packet sniffing, potentially oversimplifying the evaluation of
website security.

6. Mohammed AL Fawar et al [6] presented the significance of traffic analysis for
optimizing performance, identifying network anomalies and securing network,
while tools such as Wireshark are referred for traffic analysis, network, penetration
testing, etc., It’s about appreciating the significance of network analysis and the
security problems that are associated with it.

7. Kovstur Maxim et al [7] presented a method for analyzing wireless network traffic
which was written in python programming language and used panda library. In order
to make wireless networks available and fault-tolerant, constant monitoring is



17

needed, in that, the actual target is about making better tracking of anomalous traffic
during analysis.

8. Laura Chappell et al [8] proposed a distributed network analysis in which traffic is
inspected at multiple places on the network. The conventional way of doing this is to
use a full-blown network Analyzer, which is quite expensive. Exported packet
record files are imported to real-time network analysis tool TOPAS and analyzed
using the open-source network analyzer Wireshark.

9. Banerjee, Usha et al. [9] described Wireshark as a sniffing tool in the networks
which is shown by an experimental setup where effectiveness of malicious packet
detection in any network is shown. Inferences have been derived and the capabilities
have been made evident which indicates that it could be a potential subject for future
development into a robust intrusion detection system.

10.A Dabir et al [10] discusses the bottlenecks of commodity hardware-based packet
capturing for local area networks (LANs) without data loss. Tests were run with a
wireshark packet sniffer to capture packets directly from disk in Fast Ethernet
networking with different setups. These were experiments that created large packets
near line rate. Also play around with different kernel-level buffer sizes associated
with the packet capturing socket.

11.Vixens Ndatinya Zhifeng Xiao et al [11] presented Network Forensics Analysis
Using Wireshark. As the variety and volume of networked computing systems have
been increasing, network security has become an increasingly crucial field due to the
increasing number of attacks. Now the network administrators have to be able to
monitor and analyze the network traffic to identify the event and the network
administrator must be able to respond immediately to any event.

12.Piyush Goyal et al [12] Started a Comparison study of two of the best packets
sniffing tools —Tcpdump and Wireshark. The increase in the sphere of the Internet



18

has also broadened the spectrum of Networking, data transfer, and data security.
They have become the preferred tools of the hackers to be exploited to scan for
specific networks and eavesdrop on unencrypted information. These tools allow
White Hat hackers to thwart the criminals by filtering out malicious packets and
their source.

13.Samer Hamdani et al [12] reported research on a COAP vs. MQTT comparison
study. IOT technology contains continuous data emitters or sensor data,
predominantly transmitted by internet connection, generating homogeneous and
massive data transmission. A low-cost method for distributed network analysis was
proposed by Gerhard Munz et al [13]. In contrast, instead of having very expensive
network analyzers at every observation point, the authors recommend using packet
data exports from network devices supporting PSAMP and Flexible NetFlow. The
idea is to collect packet dumps from these devices and export them to TOPAS, an
open-source real-time network analysis framework, which then uses the network
analyzer Wireshark to do in-depth analysis. With a Monitor Manager in place, only
the necessary data for desired analysis purpose is exported. Consequently, it
provides a practical approach that makes use of existing infrastructure and
open-source tools to provide scalable and cost-effective distributed network
analysis, while highlighting its merits and drawbacks.

14.Pallavi Asrodia et al [14] described the importance of network traffic analysis in the
context of the increasing growth and complexity of computer networks. They laid
emphasis on packet sniffers, so that they could efficiently manage, operate and
monitor these networks and maintain their smoothness, ensuring their economic
efficiency. Packet sniffing is a fundamental tool in network monitoring,
troubleshooting, and traffic logging, for wired as well as wireless networks. It also
goes into the basics about packet sniffers and how they work to analyze network
traffic.



19

CHAPTER 3

Problem Statement

Objective:

To analyze and monitor network traffic in a given network environment to identify
potential issues such as network congestion, security threats, and performance bottlenecks
using the packet sniffer tool, Wireshark.

Background:

In today's digital age, network performance and security are paramount for businesses and
individuals alike. With the increasing complexity of network infrastructures, it becomes
crucial to have robust tools and methodologies for monitoring and analyzing network
traffic. Wireshark, a powerful packet sniffer tool, provides detailed insights into network
traffic, making it an essential tool for network administrators and security professionals.

Problem Description:

The goal of this project is to perform a comprehensive analysis of network traffic in a
controlled environment using Wireshark. The analysis aims to identify key metrics such as
bandwidth usage, traffic patterns, and potential security threats. By capturing and
examining network packets, we can gain valuable insights into the network's performance
and security posture.

Scope of Work:

Setup and Configuration:

 Install and configure Wireshark on the network.
 Define the network environment to be monitored (e.g., a small office network, a

university campus network, etc.).

Data Collection:

 Capture network traffic over a specified period.
 Ensure diverse traffic by including activities such as web browsing, file transfers,

video streaming, and online gaming.



20

Traffic Analysis:

 Analyze captured data to identify normal and abnormal traffic patterns.
 Measure bandwidth usage and identify the top bandwidth-consuming applications

and devices.
 Detect potential security threats such as unauthorized access attempts, malware, and

suspicious communication patterns.

Performance Evaluation:

 Assess the overall network performance and identify bottlenecks.
 Evaluate the impact of different types of traffic on network performance.

Reporting:

 Compile a detailed report summarizing findings, including visualizations such as
graphs and charts.

 Provide recommendations for optimizing network performance and enhancing
security based on the analysis.

Deliverables:

 A comprehensive report detailing the methodology, analysis, findings, and
recommendations.

 Visualizations of network traffic patterns and key metrics.
 A step-by-step guide on using Wireshark for network traffic analysis.

Expected Outcomes:

 Enhanced understanding of network traffic patterns and performance.
 Identification of potential security threats and vulnerabilities.
 Actionable insights for optimizing network performance and security.

Tools and Technologies:

 Wireshark for packet capture and analysis.
 Additional tools for data visualization and reporting (e.g., Excel, Python scripts).



21

CHAPTER 4

Objectives

Study of Network Protocols:

To gain an in-depth understanding of network protocols such as TCP/IP, UDP, HTTP, FTP,
and DNS.

To analyze the structure and functionality of network packets.

Evaluation of Packet Sniffer Tools:

To investigate and evaluate different packet sniffer tools, including Wireshark and
tcpdump.

To learn the installation, configuration, and effective usage of these tools.

Network Traffic Capture:

To capture live network traffic using a packet sniffer tool.

To analyze the captured network traffic data for better comprehension of network
communication.

Traffic Pattern Identification and Analysis:

To identify common traffic patterns in the network.

To analyze the traffic for anomalies or unusual patterns indicating network issues or
security threats.

Network Performance Evaluation:

To assess network performance by analyzing packet loss, latency, and throughput.

To identify network bottlenecks and propose solutions for performance improvement.

Security Analysis and Implementation:

To identify potential security vulnerabilities through packet analysis.



22

To propose and implement security measures such as encryption, firewall configurations,
and intrusion detection systems.

Custom Filter Development:

To develop custom filters for isolating specific types of traffic or protocols.

To conduct in-depth analysis on targeted network activities using these filters.

Report and Visualization Generation:

To develop methods for presenting analyzed data through comprehensive reports and
visualizations.

To communicate findings effectively to stakeholders such as network administrators and
security teams.

Compliance with Legal and Ethical Standards:

To understand and adhere to legal and ethical considerations related to network monitoring
and data privacy.

To ensure compliance with relevant laws and organizational policies.



23

CHAPTER 5

METHODODLOGY

In this, proposed method for network traffic analysis using Wireshark encompasses a
systematic and comprehensive approach to extract meaningful insights from network
packets. Utilize Wireshark’s packet capturing capabilities to collect network traffic data at
strategic points within the network, such as routers or switches. Ensure adequate packet
sampling for accuracy.

Data Filtering:

Employ Wireshark's advanced filtering options to eliminate noise and isolate packets of
interest. Filters may include IP addresses, port numbers, or specific protocols, depending
on the analysis goals.

Packet Decoding:

Leverage Wireshark's deep packet inspection capabilities to decode packets and extract
protocol-specific information. This step helps in understanding the nature of the traffic,
such as HTTP requests or DNS queries.

Flow Analysis:

Group packets into flows or connections, considering source-destination pairs and their
respective protocols. This aids in tracking communication patterns and identifying
abnormal behavior.

Statistical Profiling:

Calculate various statistical metrics, including packet counts, packet size distributions, and
traffic patterns over time. Wireshark provides tools for statistical analysis and graph
generation.

Protocol Analysis:

Perform protocol-specific analysis, such as identifying protocol-specific anomalies or
detecting irregularities in protocol handshake processes (e.g., TCP SYN-ACK).



24

Behavioral Analysis:

Employ heuristic or machine learning-based methods to identify abnormal network
behavior. Train models on historical data to detect deviations from expected traffic
patterns.

Security Signature Matching:

Utilize Wireshark's signature-based detection features to identify known attack patterns or
malware signatures within the captured traffic. Implement an alerting system that triggers
notifications for detected anomalies or potential security threats. Wireshark can be
integrated with alerting mechanisms to automate this process. Create visual representations
of network traffic patterns, including time-series graphs, heatmaps, and network topology
diagrams, using Wireshark's visualization capabilities.

Forensic Analysis:

For security incidents, utilize Wireshark's ability to save packet capture files for later
forensic analysis. This step is crucial for post-incident investigations.

Reporting:

Generate detailed reports summarizing the findings, including observed anomalies,
security threats, and recommendations for network optimization and security enhancement.
Implement continuous network traffic monitoring using Wireshark or compatible tools to
ensure ongoing network security and performance.

This comprehensive method harnesses Wireshark's rich feature set and analytical
capabilities to provide network administrators and security professionals with a powerful
toolset for enhancing network visibility, security, and performance. It enables proactive
threat detection, rapid incident response, and data-driven decision-making in the dynamic
landscape of network management and cybersecurity.



25

CHAPTER 6

Algorithm
1. Setup

 Install Wireshark on the analysis machine.
 Connect the machine to the network you want to analyze.

2. Capture Network Traffic

 Open Wireshark.
 Select the appropriate network interface to capture packets.
 Start the packet capture.
 Specify a capture filter (if necessary) to capture only relevant traffic. For example, to

capture only HTTP traffic, use the filter tcp port 80.

3. Filtering Captured Traffic

 Once the traffic is captured, apply display filters to focus on specific types of traffic.

Example filters:

 http for HTTP traffic.
 ip.addr == 192.168.1.1 to filter traffic to/from a specific IP address.
 tcp.port == 80 to filter traffic on a specific port.

4. Analyzing Traffic

Identify Communication Patterns:

 Analyze source and destination IP addresses to identify communication patterns.
 Identify frequent communicators and high-traffic nodes.

Protocol Analysis:

 Analyze the distribution of protocols (e.g., HTTP, HTTPS, FTP, DNS).
 Identify any unusual or unauthorized protocols.

Performance Metrics:

 Calculate metrics such as packet count, byte count, and throughput for different
traffic types.



26

Latency and Response Time:

 Measure the round-trip time (RTT) and response time for TCP connections.

Error Analysis:

 Identify packet loss, retransmissions, and errors.

Security Analysis:

 Detect potential security threats like port scanning, unusual traffic patterns, or
suspicious connections.

 Identify clear-text transmission of sensitive data.

5. Report Generation

Summarize the analysis results.

Generate visualizations (graphs, charts) for better understanding.

Document findings and recommendations.

Detailed Steps and Implementation

Step 1: Setup

 Ensure that Wireshark is correctly installed and that you have the necessary
permissions to capture traffic on the network interface.

Step 2: Capture Network Traffic

 Open Wireshark and select the network interface.
 Click on the “Capture Options” (gear icon) to set capture parameters if needed.
 Start the capture by clicking the “Start” button.

Step 3: Filtering Captured Traffic

 Use Wireshark’s display filter bar to enter specific filters.
 For example, to filter HTTP traffic, type http and press enter.
 You can combine filters using logical operators (e.g., ip.addr == 192.168.1.1 and

tcp.port == 80).

Step 4: Analyzing Traffic

Use Wireshark’s built-in analysis tools:



27

 Statistics menu: Provides various statistics like protocol hierarchy, endpoint list,
conversations, etc.

 Follow TCP Stream: Useful for examining complete conversations.
 IO Graphs: Visualize traffic patterns over time.

Scripted Analysis:

 Export captured data to CSV or other formats for further analysis using external
tools like Python scripts.

Step 5: Report Generation

 Compile all the analysis results into a comprehensive report.
 Use tools like Excel or matplotlib (Python) to create visualizations.



28

CHAPTER 7

Implementation

Data Filtering:

Employ Wireshark's advanced filtering options to eliminate noise and isolate packets of
interest. Filters may include IP addresses, port numbers, or specific protocols, depending
on the analysis goals.

Fig. 7.1 Data filtering using Wireshark.



29

Packet Decoding:

Leverage Wireshark's deep packet inspection capabilities to decode packets and extract
protocol-specific information. This step helps in understanding the nature of the traffic,
such as HTTP requests or DNS queries.

Flow Analysis:

Group packets into flows or connections, considering source-destination pairs and their
respective protocols. This aids in tracking communication patterns and identifying
abnormal behavior.

Fig. 7.2 Flow analysis using Wire Shark.

Statistical Profiling:

Calculate various statistical metrics, including packet counts, packet size distributions, and
traffic patterns over time. Wireshark provides tools for statistical analysis and graph
generation.



30

Protocol Analysis:

Perform protocol-specific analysis, such as identifying protocol-specific anomalies or
detecting irregularities in protocol handshake processes (e.g., TCP SYN-ACK).

Fig. 7.3 Protocol analysis.

Security Signature Matching:

Utilize Wireshark's signature-based detection features to identify known attack patterns or
malware signatures within the captured traffic. Implement an alerting system that triggers
notifications for detected anomalies or potential security threats. Wireshark can be
integrated with alerting mechanisms to automate this process. Create visual representations
of network traffic patterns, including time-series graphs, heatmaps, and network topology
diagrams, using Wireshark's visualization capabilities.



31

Fig. 7.4 Security Signature Matching.

Forensic Analysis:

For security incidents, utilize Wireshark's ability to save packet capture files for later
forensic analysis. This step is crucial for post-incident investigations.

Fig. 7.5 Forensic analysis tab



32

CHAPTER 8

Result & Analysis
Network Traffic Overview

In this traffic, protocol filter of HTTP was applied, which resulted in showing the packets
related to http protocol as shown in below figure.

Fig. 8.1 Packet capturing

Fig. 8.2 http packet protocol details



33

Flow Graph: Flow graph shows the connection between the hosts. For each connection that was
captured it shows the packet timing, direction, ports, and comments. It provides filters like ICMP
(Internet Control Message Protocol) flows, ICMPv6 flows, UIM flows, and TCP flow . The flow
graph window provides different controls based on that. With the help of flow graph you can easily
figure out various port numbers and IP addresses and thus can easily get to get know if any unusual
port number or IP address occurs in the traffic. The below figure shows the flow graph for the
captured traffic.

Fig. 8.3 Flow Diagram

Fig. 8.4 Flow selection using wireshark.



34

Traffic Volume Analysis:

IO GRAPH: Display the number of packets or the amount of bytes per second for all
packets that match the chosen filter.

Fig 8.5 I/O Graph

HTTP -> Packet Counter: The packet counter the data regarding the HTTP packets.
From here, we can analyze if there was any redirection or any kind of error. It helps in
knowing if any attack like DDOS attack place, or were any packets redirected to any

other unusual address. From the below figure, we analyzed that all the packets have 2xx
Response, indicating that all packets were transmitted successfully and no packet was

dropped.

Fig. 8.6 Packet Counter



35

CHAPTER 9

Conclusion

Packet sniffing is useful to Analyze the data during the Transmission in the network.
Sniffing tools are useful to implement it. It can be used for network traffic monitoring,
traffic analysis, troubleshooting and other useful purposes. Packet sniffers can capture
things like passwords and usernames or other sensitive information. Networks Sniffing in
non-switched network is easy but sniffing in switched network is difficult because we use
switches in network which narrow the traffic and send to particular system, so for sniffing
in this type of network we use some methods. There are many available tools. Packet sniffer
can be enhanced in future by incorporating features like making the packet sniffer program
platform independent, and making tool by neural network Hence Sniffing should done in a
manner to improve the performance of the network and to make it more secure.

Wireshark is useful for network monitoring, Traffic analysis and troubleshooting. By
uploading Captured Packets (pcap file) on this tool you will get IP Addresses of given pcap
and also the name of City, country and postal code related to them. With IP address
management , organizations can track the status and availability of every device in their
infrastructure. It is highly useful in preventing Cyber Threats(eg. Active attack) and
assaults while ensuring a smooth workflow which enhances the Network Security.



36

CHAPTER 10

Future Scope

Enhanced Security Measures: With the increasing number of cyber threats, network
traffic analysis using tools like Wireshark can help develop advanced security protocols.
Future work can focus on integrating machine learning algorithms to detect anomalies and
potential threats in real-time.

IoT Network Monitoring: As the Internet of Things (IoT) expands, there is a growing
need for effective monitoring tools. Wireshark can be used to analyze the traffic of IoT
devices, ensuring secure and efficient communication. Future projects could focus on
optimizing Wireshark for IoT networks.

Performance Optimization: Network traffic analysis can help identify bottlenecks and
optimize network performance. Future work can involve developing automated scripts or
plugins for Wireshark that provide real-time performance insights and suggest
improvements.

Big Data Integration: With the rise of big data, integrating Wireshark with big data
analytics platforms could provide deeper insights into network traffic patterns. Future
projects can explore the potential of such integrations to handle large-scale data and derive
meaningful insights.

Cloud Network Analysis: As more organizations move to cloud-based infrastructure,
analyzing network traffic in the cloud becomes crucial. Future research can focus on
adapting Wireshark for cloud environments, ensuring it can handle the unique challenges
posed by cloud networking.

Automated Incident Response: Future projects can aim to develop automated incident
response systems using Wireshark. By integrating it with other security tools, it can help in
the rapid detection and response to security incidents.

Compliance and Forensics: As regulatory compliance becomes more stringent, network
traffic analysis can help in maintaining compliance and conducting forensic investigations.
Future projects can focus on enhancing Wireshark’s capabilities in these areas, making it
easier to audit and investigate network activities.



37

REFERENCES
[1] Alfawareh Muhamed et al “A deeper Look into Network Traffic Analysis Using

Wireshark” Academia.edu, 2015.

[2] K. Maxim et al “Research of wireless network traffic analysis using big data processing
technology,” International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), 2021, pp. 115-121.

[3] Chappell et al “Wireshark network analysis: the official Wireshark certified network
analyst study guide”, 2nd Edition, ISBN: 978-1- 893939-94-3, Chappell University, 2010.

[4] Usha Banerjee et al “Evaluation of the Capabilities of WireShark as a tool for Intrusion
Detection” International Journal of computer applications, 2010, pp.1-5.

[5] A. Dabir et al “Bottleneck Analysis of Traffic Monitoring using Wireshark,”
Innovations in Information Technologies (IIT), Dubai, United Arab Emirates, 2007, pp.
158-162.

[6] Ndatinya, Vivens et al. “Network forensics analysis using Wireshark” International
Journal of Security and Networks, 2015, pp.91-106.

[7] P. Goyal et al “Comparative study of two most popular packet sniffing tools-Tcpdump
and Wireshark,” International Conference on Computational Intelligence and
Communication Networks (CICN), 2017, pp. 77-81.

[8] S. Hamdani et al “A Comparative study of COAP and MQTT communication
protocols,” International Symposium on Digital Forensics and Security (ISDFS), 2019, pp.
1-5.

[9] G. Munz et al “Distributed Network Analysis Using TOPAS and Wireshark,” IEEE
Network Operations and Management Symposium Workshops, 2008, pp. 161-164.

[10] Chappell, Laura et al “Wireshark 101: Essential skills for network analysis-wireshark
solution series” Laura Chappell University, 2017.

[12] Asrodia, Pallavi et al “Network traffic analysis using packet sniffer” International
journal of engineering research and applications, 2012, pp. 854-856.

[13] S. Sandhya et al “Assessment of website security by penetration testing using
Wireshark,” International Conference on Advanced Computing and Communication
Systems (ICACCS), 2017, pp. 1-4.



38

[14] R. Das et al “Packet tracing and analysis of network cameras with Wireshark”
International Symposium on Digital Forensic and Security (ISDFS),2017, pp. 1-6.

[15] Aschin Dhakad et al “Real Time Network Traffic Analysis using Artificial
Intelligence, Machine Learning and Deep Learning: A Review of Methods, Tools and
Applications” International Conference on Self Sustainable Artificial Intelligence Systems
(ICSSAS),2023,pp.367-373.

[16] A. Vikram et al “Anomaly detection in Network Traffic Using Unsupervised Machine
Learning Approach,” International Conference on Communication and Electronics
Systems (ICCES),2020, pp. 476- 479.

[17] A. Vikram et al “Blockchain Technology and its Impact on Future of Internet of
Things (IoT) and Cyber Security,” International Conference on Electronics,
Communication and Aerospace Technology, 2022, pp. 444-447.

[18] V. Dharani et al “Spam SMS (or) Email Detection and Classification using Machine
Learning,” International Conference on Smart Systems and Inventive Technology
(ICSSIT),2023, pp. 1104-1108.

[19] Upendra Shetty D R and A. Patil et al “Malicious URL Detection and Classification
Analysis using Machine Learning Models,” International Conference on Intelligent Data
Communication Technologies and Internet of Things (IDCIoT),2023, pp. 470-476.

[20] BoYu “Based on Network sniffer implement network monitoring Computer
Application and System Modeling (ICCASM) 2010 International Conference on Volume:
7,2010,Page(s):V7-1 -v7-3

[21] A Dabir,A Matrawy,”Bottleneck Analysis of Traffic Monitoring Using Wireshark”
4th International conference on Innovations in Information Technology,2007,IEEE
Innovations 07,18-20 Nov.2007.Page(s) : 158-162

[22] Ashwani Kumar,Security Attacks in Manet - A Review,2011.

[23] F. Khan, R. Kothari, M. Patel and N. Banoth, "Enhancing Non-Fungible Tokens for
the Evolution of Blockchain Technology," 2022 International Conference on Sustainable
Computing and Data Communication Systems (ICSCDS), Erode, India, 2022, pp.
1148-1153, doi: https://doi.org/10.1109/ICSCDS53736.2022.9760849

[24] D.Madhavi, TCP Session Hijacking Implementation by Stealing Cook-ies,Vol. 2,
Issue 11, 2015



39

[25] Ankita Gupta, Kavita, Kirandeep Kaur, Vulnerability Assessment and Penetration
Testing, International Journal of Engineering Trends and Technology- Volume4Issue3-
2013.

[26] D. Kothari, M. Patel and A. K. Sharma, "Implementation of Grey Scale Normalization
in Machine Learning & Artificial Intelligence for Bioinformatics using Convolutional
Neural Networks," 2021 6th International Conference on Inventive Computation
Technologies (ICICT), Coimbatore, India, 2021, pp. 1071-1074,
https://doi.org/10.1109/ICICT50816.2021.9358549.


