
1

“SPOTTING CYBER-ATTACKS USING
MACHINE LEARNING”

PROJECT REPORT

Submitted in the partial fulfilment of the requirements

for award of the

Six Months Online Certificate Course

in

Cyber Security
Course Duration: [25-01-2024 to 24-07-2024]

By

GAJJALA SRINIVAS KUMAR
 (Ht. No. 2406CYS109)

Under the Esteemed Guidance

Dr. UMA N DULHARE

Professor & Head

Computer Science and Artificial Intelligence Department,

Muffakham Jah College of Engineering and Technology,

Hyderabad

DIRECTORATE OF INNOVATIVE LEARNING & TEACHING (DILT)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
(Formerly SCDE_SCHOOL OF CONTINUING AND DISTANCE EDUCATION)

2

Kukatpally, Hyderabad, Telangana State, INDIA- 500 085

JULY 2024

3

ABSTRACT

Cyber-crime is proliferating everywhere, exploiting every kind of vulnerability to the

computing environment. Ethical Hackers pay more attention towards assessing vulnerabilities and

recommending mitigation methodologies. The development of effective techniques has been an

urgent demand in the field of the cyber security community. Most techniques used in today’s IDS

are not able to deal with the dynamic and complex nature of cyber-attacks on computer networks.

Machine learning for cyber security has become an issue of great importance recently due to the

effectiveness of machine learning in cyber security issues. Machine learning techniques have been

applied for major challenges in cyber security issues like intrusion detection, malware

classification and detection, spam detection and phishing detection. Although machine learning

cannot automate a complete cyber security system, it helps to identify cyber security threats more

efficiently than other software-oriented methodologies, and thus reduces the burden on security

analysts. Hence, efficient adaptive methods like various techniques of machine learning can result

in higher detection rates, lower false alarm rates and reasonable computation and communication

costs. Our main goal is that the task of finding attacks is fundamentally different from these other

applications, making it significantly harder for the intrusion detection community to employ

machine learning effectively.

Keywords: Cyber-crime, Machine learning, Cyber-security, Intrusion detection system.

4

TABLE OF CONTENTS

Chapter Chapter Name Page No.

 ABSTRACT 2

1 Introduction 6

 1.1 Introduction 6

1.2 Problem Statement 7

1.3 Scope of Research 8

1.4 Existing System 9

 1.5 Proposed System 9

 1.6 Organization Report 10

2 Literature Survey 13

3 Methodology 17

 3.1 System Architecture 17

3.2 Algorithm 19

4 System Requirement Specification 22

 4.1 Functional Requirement 22

4.2 Performance Requirement 22

4.3 Software Requirement 22

4.4 Hardware Requirement 23

4.5 Technology Used 23

5 System Design 26

 5.1 Introduction to UML 26

5.2 UML Diagrams 27

 5.2.1 Use Case Diagram 27

 5.2.2 Activity Diagram 27

 5.2.3 Sequence Diagram 27

 5.2.4 Class Diagram 28

6 Implementation 34

 6.1 Code 34

6.2 Read CSV file 50

6.3 Output 52

7 Testing 57

5

 7.1 System Testing 57

7.2 Types of Testing 57

 7.2.1 Module testing 57

 7.2.2 Integration testing 57

 7.2.3 Acceptance testing 57

 7.2.4 Behavioural testing 58

 7.2.5 Unit testing 58

7.3 Test Cases 59

88 Results 62

9 Conclusions 64

10 Future enhancement 66

 References 68

 Annexure – I 70

 Annexure – II 71

 Annexure – III 71

6

CHAPTER-01

INTRODUCTION

1.1 Introduction

Research into identifying cyber- attacks using machine learning in smart IoT

networks focuses on developing algorithms and methodologies to detect and mitigate

various types of cyber threats within interconnected IoT systems. This area of study is

crucial due to the proliferation of IoT devices and the increasing sophistication of cyber-

attacks targeting these devices. The process typically involves collecting and analyzing

data from IoT devices to identify patterns indicative of malicious activity. Machine

learning algorithms are then trained on this data to recognize these patterns and

distinguish between normal and malicious behavior. Various techniques such as anomaly

detection, supervised learning, and reinforcement learning may be employed depending

on the nature of the cyber threats and the characteristics of the IoT network. Key

challenges in this field include the vast amount of data generated by IoT devices, the need

for real-time detection to respond promptly to threats, and the limited computational

resources available on IoT devices. Researchers are continually exploring novel

approaches to address these challenges and improve the effectiveness of cyber -attack

detection in smart IoT networks. Additionally, ensuring the privacy and security of the

data collected from IoT devices is essential to maintaining user trust and compliance with

regulation. Traditional security measures, such as firewalls and antivirus software, are

often insufficient to protect IoT environments due to their distributed nature, diverse

communication protocols, and resource-constrained devices. In this context, leveraging

advanced technologies such as Machine Learning (ML) holds tremendous promise for

enhancing cybersecurity and defending against evolving threats. Machine Learning, a

subset of artificial intelligence, enables computers to learn from data and make

predictions or decisions without being explicitly programmed. By analyzing vast amounts

of data generated by IoT devices, ML algorithms can identify patterns, anomalies, and

indicators of potential cyber- attacks. This proactive approach to threat detection

empowers organizations to stay ahead of adversaries and mitigate risks before they

escalate into full-blown security incidents. We explore the intersection of Machine

Learning and IoT security, focusing specifically on the application of ML algorithms for

spotting cyber- attacks within IoT environments. We examine the challenges posed by

securing IoT ecosystems, discuss the limitations of traditional security approaches, and

highlight the unique opportunities afforded by ML-based solutions. Furthermore, we

7

delve into the key outcomes and benefits of leveraging ML and IoT programs for cyber -

attack detection, including improved threat detection, enhanced situational awareness,

and faster incident response.The rate of attacks against networked systems has increased

melodramatically, and the strategies used by the attackers are continuing to evolve. For

example, the privacy of important information, security of stored data platforms,

availability of knowledge, etc. Depending on these problems, cyber terrorism is one of

the most important issues in today’s world. Cyber terror, which caused a lot of problems

to individuals and institutions, has reached a level that could threaten public and country

security by various groups such as criminal organizations, professional persons, and cyber

activists. Intrusion detection is one of the solutions to these attacks. A free and effective

approach for designing Intrusion Detection Systems (IDS) is Machine Learning. In this

study, were used to detect port scan attempts based on the dataset with a software-based

application that is used to identify malicious behavior in the network . Based on the

detection technique, intrusion detection is classified into anomaly-based and signature-

based. IDS developers employ various techniques for intrusion detection. Information

security is the process of protecting information from unauthorized access, usage,

disclosure, destruction, modification, or damage. The terms ”Information security”,

”computer security” and ” information insurance” are often used interchangeably.

1.2 Problem statement

Machine learning has emerged as a promising solution for enhancing the security of IoT

networks by enabling proactive threat identification and mitigation. However, several

challenges hinder the effective application of machine learning techniques in this context.

These challenges include: inherent vulnerabilities of IoT devices and networks make

them prime targets for cyber- attacks. Traditional security mechanisms often fall short in

effectively identifying and mitigating these threats due to the dynamic and

heterogeneous nature of IoT environments. Therefore, there is a pressing need to

develop advanced and adaptive approaches for the timely detection pose significant

challenges.

1.2.1 Real-time Detection: Cyber- attacks in IoT networks often require real-time

detection and response to prevent or minimize their impact. Machine learning

algorithms must be capable of analyze streaming data and identifying

anomalies in real-time.

1.2.2 Resource Constraints: Many IoT devices operate with limited computational

resources, such as processing power, memory, and energy. Machine learning

models deployed on these devices must be lightweight and energy-efficient

8

while maintaining high detection accuracy.

1.2.3 Adaptability to Emerging Threats: The threat landscape in IoT networks is

constantly evolving, with adversaries employing sophisticated techniques to

evade detection. Machine learning models must be adaptive and capable of

learning from new attack patterns to effectively counter emerging threats.

1.2.4 Privacy and Data Security: IoT devices often collect sensitive data, raising

concerns about privacy and data security. Machine learning algorithms must

operate in a privacy- preserving manner, ensuring that sensitive information is

not compromised during the detection process.

Addressing these challenges requires interdisciplinary research efforts aimed at

developing innovative machine learning techniques tailored for cyber- attack

identification in smart IoT networks. Additionally, there is a need for comprehensive

evaluation frameworks and benchmark datasets to assess the effectiveness and scalability

of machine learning-based security solutions in real-world IoT deployments. By

overcoming these challenges, we can enhance the security and resilience of smart IoT

networks, safeguarding critical infrastructure and ensuring the integrity of IoT-enabled

services.

1.3 Scope of Research

The objective of a project focused on identifying cyber -attacks using machine learning

in smart IoT networks can be summarized as follows:

1.3.1 Enhanced Security: The primary goal is to enhance the security posture of

smart IoT networks by developing effective techniques to detect and mitigate

cyber- attacks in real- time.

1.3.2 Detection of Diverse Threats: The project aims to identify various types of

cyber threats targeting IoT devices, including malware infections, distributed

denial-of-service (DDoS) attacks, intrusions, data exfiltration attempts, and

other forms of malicious activity.

1.3.3 Machine Learning Integration: Leveraging the capabilities of machine

learning algorithms, the project seeks to design intelligent systems capable of

automatically recognizing patterns indicative of cyber -attacks within the vast

and heterogeneous data generated by IoT devices.

1.3.4 Real-time Response: The project emphasizes the importance of real-time

detection and response to cyber threats, enabling rapid mitigation actions to be

taken to prevent or minimize the impact of attacks on IoT networks and their

associated systems.

9

1.3.5 Scalability and Efficiency: Solutions developed within the project aim to be

scalable to accommodate the increasing number of IoT devices in networks

while maintaining efficiency in terms of computational resources and response

times.

1.3.6 Adaptability and Robustness: The project intends to create detection

mechanisms that are adaptable to evolving cyber threats and robust against

evasion techniques employed by attackers, ensuring continued effectiveness

over time.

1.3.7 Privacy and Compliance: Emphasis is placed on preserving the privacy of

user data collected from IoT devices and ensuring compliance with relevant

regulations and standards governing data protection and cybersecurity.

By achieving these objectives, the project aims to contribute to the overall security and

reliability of smart IoT networks, fostering trust among users and stakeholders and

facilitating the widespread adoption of IoT technologies in various.

1.4 Existing system

When an IDS detects suspicious activity, the violation is typically reported to a security

information and event management (SIEM) system where real threats are ultimately

determined amid benign traffic abnormalities or other false alarms. However, the longer

it takes to distinguish a threat, the more Most techniques used in today's IDS are not able

to deal with the dynamic and complex nature of cyber-attacks on computer networks. This

is a huge concern as encryption is becoming more prevalent to keep our datasecure. One

significant issue with an IDS is that they regularly alert you to false positives. In many

cases false positives are more frequent than actual threats. If they don't take care to

monitor the false positives, real attacks can slip damage can be done.

Disadvantage of Existing System :

1.4.1 One of the primary challenges associated with IDS is the generation of false

positive alerts.

1.4.2 Implementing and managing IDS can be complex and resource-intensive,

particularly in large and heterogeneous network environments.

1.4.3 IDS typically focus on monitoring network traffic and may have limited

visibility into other layers of the technology stack, such as application-level

protocols, host-based activities, or encrypted communications.

1.5 Proposed System

Machine Learning algorithms can help identify and respond to cyber attacks efficiently.

Classification algorithms, such as Decision Trees, Autoencoders, and Deep Neural

10

Networks (DNN), can be used to categorize whether an attack.

Decision Trees: A supervised learning method that segments data based on patterns to

predict the outcome class, distinguishing between normal traffic and various attack types.

Autoencoders: These unsupervised learning models identify patterns in data by encoding

and decoding information, which can help distinguish anomalies or malicious behavior.

Deep Neural Networks (DNNs): Complex multi-layer models capable of learning

intricate patterns and relationships in data, making them useful for accurate classification

of cyber threats.

Advantages of proposed system

• Acquiring and labeling such data can be time-consuming and resource-intensive,

particularly for rare or emerging cyber threats.

• This can lead to poor performance on unseen data and an increased susceptibility

to false positives or false negatives.

The proposed system leverages machine learning to provide robust and real-time

identification of cyber attacks in smart IoT networks. By integrating advanced data

collection, preprocessing, feature extraction, and machine learning techniques, the

system aims to enhance the security and resilience of IoT networks against evolving

cyber threats.

1.6 Organization of Report

Creating an organizational report on the identification of cyber attacks using machine

learning in smart IoT networks involves a detailed analysis of the current state of IoT

security, machine learning techniques applied to cybersecurity, and the integration of

these technologies to enhance security measures. Here’s a structured outline to guide your

report:

➢ Title

o Identification of Cyber Attacks Using Machine Learning in Smart IoT Networks

➢ Executive Summary

o The Objective is to provide an overview of how machine learning can be

employed to identify and mitigate cyber attacks in smart IoT networks.It

Summarize the effectiveness, challenges, and future prospects of using machine

learning for IoT security.Highlights key actions and strategies for organizations

to enhance IoT security using machine learning.

➢ Introduction

o The Overview of smart IoT networks and their significance and the increasing

11

threat of cyber attacks in IoT networks.Its Purpose To explore the role of

machine learning in detecting and preventing cyber attacks in IoT environments.

➢ IoT Security Landscape

o Common cyber attacks targeting IoT devices (e.g., DDoS, ransomware, data

breaches).It Specifies vulnerabilities in IoT devices and networks.Potential

impact of these cyber attacks on organizations and individuals

➢ Machine Learning in Cybersecurity

o Basic concepts and types of machine learning (supervised, unsupervised,

reinforcement learning).General applications of machine learning in detecting

and mitigating cyber threats.

➢ Integration of Machine Learning in IoT Security Techniques and Algorithms:

o Supervised Learning Examples include anomaly detection using decision trees,

and neural networks.

o Unsupervised Learning: Techniques like clustering and anomaly detection using

Auto Encoder.

➢ Data Collection and Preprocessing

o Importance of data quality, feature selection, and data labeling in training

machine learning models.

➢ Challenges and Limitations

o The Issues related to data quality, model accuracy, and real-time

processing.Integration with existing systems, scalability, and cost. Ensuring user

privacy and ethical use of data.

➢ Future Enhancement

o Advances in machine learning algorithms and their potential applications in IoT

security.Areas for further research to improve the effectiveness of machine

learning in IoT cybersecurity.The role of regulatory frameworks in promoting

secure IoT environments.

➢ Conclusion

o Recap of key points discussed in the report.The importance of continuous

innovation and vigilance in IoT security.

➢ References

o Cite of sources, studies, and articles referenced throughout the report.

o By following this outline, you can create a comprehensive organizational report

that addresses the critical aspects of using machine learning to identify and

12

mitigate cyber attacks in smart IoT networks. Ensure that each section is well-

researched and supported by current data and examples to provide a thorough

understanding of the subject.

13

CHAPTER-02

LITERATURE SURVEY

1. Jonatan Gomez and Dipankar Dasgupta. Evolving fuzzy classifiers for intrusion

detection. In Proceedings of the 2002 IEEE Workshop on Information Assurance,

West Point, NY, USA, 2002.

Authors: Jonatan Gomez and Dipankar Dasgupta

Description

This citation refers to a publication by Jonatan Gomez and Dipankar Dasgupta titled

"Evolving fuzzy classifiers for intrusion detection." It was presented at the 2002 IEEE

Workshop on Information Assurance held in West Point, New York, USA.

The paper discusses a novel approach to intrusion detection using fuzzy

classifiers. Fuzzy classifiers incorporate the concept of fuzzy logic, which deals with

reasoning that is approximate rather than fixed and exact. The authors explore how

evolving these classifiers can enhance the adaptability and accuracy of intrusion detection

systems.

In their work, Gomez and Dasgupta address a crucial challenge in cybersecurity:

the dynamic and evolving nature of network intrusions. The paper provides a detailed

methodology for training and evolving fuzzy classifiers using machine learning

techniques, allowing the system to recognize new types of attacks while adapting to

changes in attack patterns.

The research includes a comprehensive evaluation of the classifier's performance,

demonstrating its efficacy in detecting known and emerging intrusions with a high degree

of accuracy. The results presented in this paper highlight the potential of evolving fuzzy

classifiers to improve intrusion detection mechanisms significantly.

2. Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection

using sequences of system calls. Journal of Computer Security, 6(3):151{180, August

1998.

Authors: Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji.

Description

This citation is for a paper by Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji,

titled "Intrusion Detection Using Sequences of System Calls," published in the Journal of

14

Computer Security, volume 6, issue 3, pages 151-180, in August 1998.

The paper presents a pioneering method for detecting intrusions by monitoring

sequences of system calls. The authors argue that sequences of system calls are indicative

of a program's normal behavior, and deviations from these sequences can reveal malicious

activities.

Their approach involves building profiles of normal system behavior by capturing

and analyzing the sequences of system calls made by various programs. Once these

profiles are created, the system can compare real-time sequences against the normal

patterns, identifying deviations as potential security threats. By focusing on sequences

instead of individual calls, the approach captures contextual behavior, leading to more

accurate intrusion detection.

The authors describe their methodology in detail, including the design of the

detection system, data collection, and analysis process. They also provide experimental

results that demonstrate the effectiveness of their system in detecting various types of

intrusions with minimal false positives. The paper is foundational in establishing the

importance of system call sequences in security monitoring and laid groundwork for

future research in behaviour-based intrusion detection systems

3. Peter Mell Karen Scarfone. Guide to intrusion detection and prevention systems

(idps). National Institute of Standards and Technology, NIST SP - 800-94, 2007.

Authors: Peter Mell Karen Scarfone

Description

Intrusion Detection and Prevention Systems (IDPS)." Published by the National Institute

of Standards and Technology (NIST) as Special Publication 800-94 in 2007, this

document serves as a comprehensive guide to understanding and implementing intrusion

detection and prevention systems.The guide begins by providing an overview of intrusion

detection and prevention systems, describing how they monitor network and system

activities for malicious behaviors. It outlines the fundamental differences between

intrusion detection systems (IDS) and intrusion prevention systems (IPS), highlighting

their respective capabilities.

Mell and Scarfone detail the various types of IDPS technologies, including:

1. Network-Based Systems: These monitor network traffic for suspicious activity.

2. Host-Based Systems: These operate on individual hosts to analyze system calls,

file system changes, and other internal behaviors.

3. Wireless Systems: These detect suspicious activities within wireless networks.

4. Network Behavior Analysis Systems: These identify unusual traffic patterns in

15

network flows that could indicate intrusions.

4. Jungwon Kim, Peter J. Bentley, Uwe Aickelin , Julie Greensmith, Gianni Tedesco,

and Jamie Twycross. Immune system approaches to intrusion detection { a review.

Natural Computing, 6(4):413{466, December 2007.

Authors: Jungwon Kim, Peter J. Bentley, Uwe Aickelin , Julie Greensmith, Gianni

Tedesco.

Description

This citation refers to a paper by Jungwon Kim, Peter J. Bentley, Uwe Aickelin, Julie

Greensmith, Gianni Tedesco, and Jamie Twycross, titled "Immune System Approaches

toIntrusion Detection: A Review," published in the journal Natural Computing, volume 6,

issue 4, pages 413-466, in December 2007.

The paper presents a comprehensive review of intrusion detection techniques inspired by

the human immune system. These techniques, collectively known as artificial immune

systems (AIS), are part of the broader field of biologically inspired computing.

The authors describe the analogy between biological immune systems and computer

security systems. Just as the immune system protects the body against harmful pathogens,

an intrusion detection system (IDS) aims to protect networks and computers from

malicious attacks. AIS-based intrusion detection systems use principles like pattern

recognition, anomaly detection, and learning to identify security threats.

Key areas covered in this review include:

1. Immune System Models: A summary of the components and processes of the

human immune system that are relevant to IDS, such as the concept of self/non-

self discrimination, immunological memory, and the use of antibodies.

2. Applications in Intrusion Detection: An exploration of how different immune

system concepts have been adapted to detect malicious activities in computer

networks, including negative selection, clonal selection, and danger theory.

3. Challenges and Future Directions: A discussion of the challenges facing immune-

based intrusion detection, such as scalability, adaptability, and reducing false

positives. The paper also suggests future research areas to improve AIS-based

systems' effectiveness.

5. A. Shabtai, E. Menahem and Y. Elovici. FSign: automatic, function-based

signature generation for malware, systems, man, and cybernetics, Part C:

applications and reviews. Transactions on IEEE, 41, 494–508, 2011.

Authors: A. Shabtai, E. Menahem and Y. Elovici.

16

Description

This citation refers to a paper authored by A. Shabtai, E. Menahem, and Y. Elovici, titled

"FSign: Automatic, Function-Based Signature Generation for Malware." It was published

in the IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, volume 41, on pages 494-508, in 2011.

The paper presents FSign, a novel system for automatically generating malware

signatures based on the functions utilized by malicious software. The authors aimed to

improve the speed and accuracy of malware detection by focusing on specific functions

that characterize malware behaviors.

Key features and contributions include:

1. Function-Based Analysis: The authors emphasize the importance of identifying

functions that are consistently used in malware programs. By understanding these

functions' behavior, F Sign can recognize patterns indicative of malware.

2. Automatic Signature Generation: F Sign employs an automatic signature

generation process to identify relevant functions within unknown samples,

enabling it to produce effective signatures quickly and efficiently.

3. Evaluation and Testing: The paper provides comprehensive evaluations

demonstrating that F Sign can detect a wide range of malware variants. The

system's function-based approach offers more robust protection against

obfuscation techniques used by modern malware authors.

17

CHAPTER-03

Methodology
3.1 System Architetcture:

Figure 3.1 System Architecture

3.1.1 Source:

 Source will provide the information to the user.

3.1.2 Upload Cyber Dataset

The Purpose is to uploads the Cyber dataset into the application. The main Functionality

allows the user to select the dataset file and imports it into the system for further

processing. It will Loads the dataset and provides an initial visualization showing the

count of different attack types. Alerts the user to potential data imbalance.

3.1.3 Pre-process Dataset

The purpose of pre-process dataset is to cleanses and normalizes the dataset. The main

functionality is to replaces missing values with zero and applies a Min-Max scaling

algorithm to normalize the feature values. Splits the dataset into training and testing

subsets, using 80% of the data for training and 20% for testing.It will returns the pre-

processed dataset ready for model training.

3.1.4 Run Auto Encoder Algorithm

It works on to trains an auto encoder deep learning algorithm on the dataset.The main

Function is to extracts features from the Auto Encoder model after training.It Provides

the accuracy of the model and the learned feature representations.

18

3.1.5 Run Decision Tree with PCA

It Applies dimensionality reduction and classification using PCA and Decision Tree

algorithms. It works to transforms the features extracted from the Auto Encoder using

PCA to reduce dimensionality. Trains a Decision Tree classifier on the transformed

features and predicts labels based on dataset signatures.It displays improved classification

accuracy after dimensionality reduction.

3.1.6 Run DNN Algorithm

The purpose is to further enhances classification using a Deep Neural Network (DNN).It

works to trains a DNN on the predicted labels from the Decision Tree classifier to detect

and classify attacks.It Displays the enhanced accuracy and precision obtained with the

DNN.

3.1.7 Detection & Attribute Attack Type

The purpose of this is to identifies and attributes attack types for unlabelled data.It works

to uploads a new test dataset containing only signature data. Uses the trained DNN model

to predict the attack type for each test data entry.Outputs the predicted attack types for

each entry.

3.1.8 Comparison Graph

It purpose is to visualizes a comparison between different algorithms.It will plots a graph

to compare precision, recall, accuracy, and F1 Score between Auto Encoder, Decision

Tree with PCA, and DNN.It displays a bar graph comparing the performance of each

algorithm.

3.1.9 Comparison Table

It will tabulates the performance metrics for each algorithm.It’s functionality Generates a

table that compares algorithms across various metrics such as accuracy, precision, recall,

and F1 Score. It Displays a detailed comparison table with metric values for each

algorithm.

19

3.2 Algorithms

 3.2.1 Auto Encoder

Autoencoders are a type of neural network commonly used for unsupervised learning

tasks, particularly in dimensionality reduction and data compression. In the context of

anomaly detection, an autoencoder can learn to reconstruct normal patterns and identify

deviations as potential cyber attacks.The autoencoder can reconstruct normal instances

with low error rates. When presented with anomalous data (such as data generated by

cyber attacks), the reconstruction error is typically higher. Therefore, instances with high

reconstruction error are flagged as potential anomalies or cyber attacks.

3.2.2 Decision tree

Decision trees are another powerful machine learning technique commonly used in

identifying cyber attacks. A decision tree model is trained using the labeled dataset,

where each data point is labeled as either a normal or an attack instance. The decision

tree algorithm recursively splits the data based on the features to create a tree-like

structure. Decision trees are simple and interpretable models that partition the feature

space based on attribute values. They are effective for detecting certain types of cyber

attacks by recursively splitting the data into subsets.

3.2.3 DNN

A deep neural network (DNN) is an ANN with multiple hidden layers between the input

and output layers. Similar to shallow ANNs, DNNs can model complex non-linear

relationships. DNNs can be trained to recognize patterns of normal behavior within IoT

networks. Deviations from these patterns can indicate potential cyber attacks. DNNs

excel at anomaly detection tasks by learning to distinguish between normal and abnormal

network behavior. Deep Neural Networks (DNNs) are increasingly being utilized in

identifying cyber attacks within smart IoT networks due to their powerful ability to model

complex patterns and detect subtle anomalies in large datasets. DNNs consist of multiple

layers of neurons, including input layers, hidden layers, and output layers. Each layer

transforms in IoT networks, this includes network traffic data, device logs, and sensor

readings. Data preprocessing steps like normalization, noise reduction, and segmentation

are critical to prepare the data for model training. By analyzing traffic patterns and

identifying abnormal spikes, DNNs can predict and flag potential DoS attacks. DNN

algorithms in identifying cyber-attacks in smart IoT networks leverages their capability

20

to learn and recognize intricate patterns from vast amounts of data, providing a robust

mechanism for real-time threat detection and mitigation.

21

CHAPTER-04

System Requirement Specification

The software requirements specify the use of all required software products like

data management system. The required software product specifies the numbers and

version. Each interface specifies the purpose of the interfacing software as related to this

software product.

4.1 Functional Requirements

The functional requirement refers to the system needs in an exceedingly computer code

engineering method.The key goal of determinant “functional requirements” in an

exceedingly product style and implementation is to capture the desired behavior of a

software package in terms of practicality and also the technology implementation of the

business processes.

4.2 Performance Requirements

Performance is measured in terms of the output provided by the application. Requirement

specification plays an important part in the analysis of a system. Only when the

requirement specifications are properly given, it is possible to design a system, which will

fit into required environment. It rests largely with the users of the existing system to give

the requirement specifications because they are the people who finally use the system.

This is because the requirements have to be known during the initial stages so that the

system can be designed according to those requirements. It is very difficult to change the

system once it has been designed and on the other hand designing a system, which does

not cater to the requirements of the user, is of no use.

The requirement specification for any system can be broadly stated as given below:

The system should be able to interface with the existing system.

The system should be accurate.

The system should be better than the existing system.

4.3 Software Requriements

The software requirements specify the use of all required software products like data

management system. The required software product specifies the numbers and version.

Each interface specifies the purpose of the interfacing software as related to this software

product.

 Operating system : Windows XP/7/10

22

 Coding Language : Python 3.7

4.4 Hardware Requirements

The hardware requirement specifies each interface of the software elements and

the hardware elements of the system. These hardware requirements include

configuration characteristics.

➢ System : Pentium IV 2.4 GHz.

➢ Hard Disk : 75 GB.

➢ Monitor : 15 VGA Color.

➢ Mouse : Logitech.

➢ RAM : 1 GB

 4.5 Technology used

Identifying cyber attacks using machine learning in IOT networks,several technologies

are commonly employed.

Here are some technologies used in this context:

4.5.1 Machine Learning

Various machine learning algorithms are applied for cyber attack detection including

supervised algorithm such as decision tree. Learning technology such as deep neural

network(DNNs) and auto encoders. Supervised learning algorithms may classify data into

normal and malicious categories.Tools for preprocessing and analyzing IoT data play a

crucial role.

These may include Python libraries such as Pandas, NumPy, and Scikit-learn for

data manipulation, feature extraction, and model training. Additionally, specialized tools

or platforms designed for handling large-scale IoT data, such as TensorFlow, may be

utilized.

1. NUMPY

NumPy arrays are used to store and manipulate data, especially in the context of

machine learning algorithms. For example, the dataset and its features are stored in

NumPy arrays (X and Y) after preprocessing. NumPy provides mathematical functions

for array computations. In this script, np.random.shuffle() is used to shuffle the dataset,

and mathematical operations are performed for calculating accuracy, precision, recall,

and F1-score metrics.NumPy arrays are involved in data normalization processes. For

instance, MinMaxScaler from scikit-learn is used to scale features between a specified

range, and NumPy arrays are used to store the normalized data.

23

2. Pandas

Pandas is used to read the dataset from CSV files into Data Frame objects. The

dataset is then manipulated using various Data Frame operations such as filling missing

values (fill na()), extracting values, and shuffling rows. Pandas is used to read the

dataset from CSV files into Data Frame objects. The dataset is then manipulated using

various Data Frame operations such as filling missing values (fill na()), extracting

values, and shuffling rows. The pandas library to load a dataset from a CSV file. The

dataset is displayed using dataset.head().Created a bar chart to visualize the various

cyber-attacks found in the dataset.

3. MATAPLOTLIB

Matplotlib is used for data visualization. It is used to plot graphs showing the distribution

of different types of cyber- attacks in the dataset. Plotting bar graphs to visualize the

distribution of cyber-attacks plotting performance comparison graphs.

6. SCIKIT-LEARN

This library is used for machine learning tasks like preprocessing, model selection,

evaluation, and many more. You've used sk-learn for tasks such as Data preprocessing:

train_test_-plit, Min-Max-Scaler Model evaluation: accuracy-score, precision-score,

recall-score, f1_scoreModel training: Decision Tree Classifier, MLP Classifier.

7. KERAS

It's a high-level neural networks API, written in Python and capable of running on top of

TensorFlow, CNTK, or Theano. In your code, you've used Keras for. Building and

training an autoencoder neural network.Saving and loading models (model_from_json,

load_weights, save_weights).

8. Tkinker

A graphical user interface (GUI) application using Tkinker in Python for

identifying cyber attacks in smart IoT networks. Import necessary libraries for GUI

development, data manipulation, machine learning, and visualization. Create the main

window of your application using Tkinker and set its title, geometry, and size functions

for uploading datasets, preprocessing data, running machine learning algorithms (Auto

Encoder, Decision Tree with PCA, DNN), detecting cyber attacks, and generating

comparison graphs and tables. Each function performs specific tasks such as loading data,

preprocessing, training machine learning models, and evaluating performance metrics.

GUI components like buttons, labels, and text areas using Tkinker to provide user

interaction and display information.

Users can upload datasets, preprocess data, run different machine learning

algorithms, detect cyber attacks, and visualize performance results through the GUI.

24

integrate machine learning algorithms such as Auto Encoder, Decision Tree with PCA,

and DNN into your application for cyber attack detection. The application preprocesses

data, trains machine learning models, evaluates performance metrics, and provides

visualizations to users. Users interact with the application through buttons and text areas

to perform tasks such as uploading datasets, running algorithms, and viewing results.

Application provides a user-friendly interface for identifying cyber attacks in smart IoT

networks using machine learning techniques, allowing users to upload datasets,

preprocess data, train models, detect attacks, and analyze performance metrics The main

GUI window is created using tkinker Tk().The window title is set to “Identification of

Cyber Attack in Network using Machine Learning Techniques”. The window

dimensions are set to 1300x1200 pixels.

IoT networks and Protocol

Understanding IoT information i.e Bot-IoT Utilizing a bot for identifying cyber attacks in

smart IoT networks involves creating an intelligent software agent that can autonomously

monitor network traffic, analyze data from IoT devices, and detect suspicious activities

indicative of cyberattacks. The bot continuously collects data from IoT devices and

network traffic, monitoring for anomalies and patterns that may indicate malicious

activity. This data could include sensor readings, device logs, network packets, and

communication protocols.

The bot analyzes the preprocessed data to identify potential cyber threats. Based

on the results of the analysis, the bot makes decisions regarding the presence of cyber

attacks.If suspicious activity is detected, the bot generates alerts and notifies

cybersecurity personnel or initiates automated response actions to mitigate the threat.

By deploying a bot for IoT cybersecurity, organizations can enhance their ability to

detect, respond to, and mitigate cyber threats in smart IoT networks, thereby

strengthening overall cybersecurity defenses and safeguarding critical infrastructure and

data.

25

CHAPTER-05

SYSTEM DESIGN

The purpose of the design phase is to arrange an answer of the matter such as by

the necessity document. This part is that the opening moves in moving the matter

domain to the answer domain. The design phase satisfies the requirements of the system.

The design of a system is probably the foremost crucial issue warm heartedness the

standard of the software package. It’s a serious impact on the later part, notably testing

and maintenance. The output of this part is that the style of the document. This

document is analogous to a blueprint of answer and is employed later throughout

implementation, testing and maintenance.

The design activity is commonly divided into 2 separate phases

System Design

System Design conjointly referred to as top-ranking style aims to spot the modules that

ought to be within the system, the specifications of those modules, and the way them

move with one another to supply the specified results. At the top of the system style all

the main knowledge structures, file formats, output formats, and also the major modules

within the system and their specifications square measure set. System design is that the

method or art of process the design, components, modules, interfaces, and knowledge

for a system to satisfy such as needs. Users will read it because the application of systems

theory to development.

Detailed Design.

Detailed Design, the inner logic of every of the modules laid out in system design is

determined. Throughout this part, the small print of the info of a module square measure

sometimes laid out in a high-level style description language that is freelance of the target

language within which the software package can eventually be enforced. In system

design the main target is on distinguishing the modules, whereas throughout careful style

the main target is on planning the logic for every of the modules.

5.1 Introduction to Uml:

The Unified Modeling Language allows the software engineer to express an analysis

model using the modeling notation that is governed by a set of syntactic semantic and

pragmatic rules. A UML system is represented using five different views that describe

the system from distinctly different perspective. Each view is defined by a set of

diagram, which is as follows. This view represents the system from the user’s

26

perspective. The analysis representation describes a usage scenario from the end-users

perspective and data and functionality are arrived from inside the system. This model

view models the static structures.

5.2 UML diagrams

UML diagrams plays a crucial role in understanding, designing, and communicating the

system architecture and functionality of cyber attack identification using machine

learning in smart IoT networks. Depending on the specific requirements and complexity

of the system, additional diagrams or variations of these diagrams may also be needed.

UML diagrams can be adapted to model various aspects of cyber- attacks, providing a

visual representation of the attack vectors, strategies, and defense mechanisms.

UML diagrams collectively provide a comprehensive visualization of the

system's structure, interactions, and workflows, facilitating a clearer understanding of

how the system identifies and responds to cyber attacks using machine learning in smart

IoT networks. Creating a UML (Unified Modeling Language) diagram for a system that

identifies cyber attacks using machine learning in smart IoT networks involves

illustrating various components and their interactions. Below are descriptions of the key

UML diagrams suitable for this system

5.2.1 Use Case Diagrams

Use-case diagrams graphically depict system behavior (use cases). These

diagrams present a high -level view of how the system is used as viewed from an

outsider’s (actor’s) perspective. A use-case diagram may depict all or some of the use

cases of a system.

A use-case diagram can contain:

➢ actors ("things" outside the system)

➢ use cases (system boundaries identifying what the system should do)

➢ Interactions or relationships between actors and use cases in the system including the

associations, dependencies, and generalizations.

Relationships in use case

1. Communication

The communication relationship of an actor in a use-case is shown by connecting the

actor symbol to the use-case symbol with a solid path. The actor is said to communicate

with the use-case.

2. Uses

A Uses relationship between the use-cases is shown by generalization arrow from the use-

27

case.

3. Extends

The extend relationship is used when we have one use-case that is similar to another use-

case but does a bit more. In essence it is like subclass.

Figure 5.1 Use case Diagram Source

This is the starting point of the process.

Upload dataset The oval labeled “Upload dataset” suggests that data is being loaded into

the system.

Data Pre-process After uploading the dataset, there’s a step for data pre-processing. This

likely involves cleaning, transforming, and preparing the data for further analysis.

Train & Test The next step involves training and testing machine learning models.

Three algorithms are shown in parallel

Auto Encoder Algorithm

Decision Tree Algorithm

DNN Algorithm

To identify the Accuracy ,Precision ,Recall and f1_Score

Detection & attacks types These trained models are then used for detecting and

classifying different types of attacks. This could be related to cybersecurity or anomaly

detection.

Result Finally, the process leads to a result, which might be the classification of attacks

28

or some other outcome.

Destination The process ends here.

Overall, this use case detecting and identifying attacks using machine learning

techniques.

5.2.1 Activity Diagram

Activity Diagrams are used to illustrate the flow of control in a system and refer to the

steps involved in the execution of a use case. It is a type of behavioral diagram and we

can depict both sequential processing and concurrent processing of activities using an

activity diagram an activity diagram focuses on the condition of flow and the sequence in

which it happens.

1. Initial State The starting state before an activity takes place is depicted using the

initial state.

2. Action or Activity State An activity represents execution of an action on objects or

by objects. We represent an activity using a rectangle with rounded corners. Basically

any action or event that takes place is represented using an activity.

3. Action Flow or Control flows Action flows or Control flows are also referred to as

paths and edges. They are used to show the transition from one activity state to another

activity state.

4. Decision node and Branching When we need to make a decision before deciding

the flow of control, we use the decision node. The outgoing arrows from the decision

node can be labelled with conditions or guard expressions. It always includes two or

more output arrows.

5. Fork Fork nodes are used to support concurrent activities. When we use a fork node

when both the activities get executed concurrently i.e. no decision is made before

splitting the activity into two parts. Both parts need to be executed in case of a fork

statement. We use a rounded solid rectangular bar to represent a Fork notation with

incoming arrow from the parent activity state and outgoing arrows towards the newly

created activities.

6. Join Join nodes are used to support concurrent activities converging into one. For

join notations we have two or more incoming edges and one outgoing edge.

29

Figure 5.2 Activity Diagram

Data Set This is the starting point.

Select a dataset for your machine learning task.

Key actions include:

Select dataset():Choosing the appropriate dataset.

Import dataset(): Loading the data into your environment.

View dataset(): Exploring the dataset to understand its structure.

Data Preprocessing In this step, you clean and prepare the data for modeling.

Essential operations:

Missing data removal(): Handling missing values.

Encoding Categorical(): Converting categorical variables into numerical representations.

Feature Extraction

Extracting relevant features from the data.

Important steps:

Dataset Split Train and Test(): Dividing the dataset into training and testing subsets.

Feature Extraction(): Identifying relevant features for modeling.

Classification

Finally, you build a model and classify data.

Functions involved:

detection(): Detecting patterns or anomalies.

30

prediction(): Making predictions based on the model.

5.2.2 Sequence Diagram

A sequence diagram is a graphical view of a scenario that shows object interaction

in a time-based sequence what happens first, what happens next. Sequence diagrams

establish the roles of objects and help provide essential information to determine class

responsibilities and interfaces.

A sequence diagram has two dimensions: typically, vertical placement represents

time and horizontal placement represents different objects.

1. Actors

An actor in a UML diagram represents a type of role where it interacts with the system

and its objects. It is important to note here that an actor is always outside the scope of the

system we aim to model using the UML diagram.

2. Lifeline

A lifeline is a named element which depicts an individual participant in a sequence

diagram. So basically each instance in a sequence diagram is represented by a lifeline.

Lifeline elements are located at the top in a sequence diagram.

The flow of data and interactions between components in a system designed to identify

cyber attacks using machine learning in smart IoT networks. Each step ensures that the

raw data from IoT devices is processed, analyzed, and acted upon efficiently to maintain

network security.

Creating a sequence diagram for identifying cyber attacks using machine learning

in smart IoT networks involves detailing the interactions between various components in

the system.

Source

The process begins with

Upload dataset: This step involves providing the machine learning system with a dataset

containing relevant information.

System: The data goes through two steps:

Clean and normalize

Here, the dataset is pre processed to remove noise, handle missing values, and ensure

consistency.

Preprocessed data: The cleaned data is ready for further analysis.

31

Figure 5.3 Sequence Diagram

ML Algorithm

The flowchart branches into two ML algorithms

Auto Encoder algorithm: Applied to the pre processed data.The accuracy of the Auto

Encoder is evaluated .

Decision Tree algorithm: Decision trees are used for classification or regression tasks. The

accuracy of the Decision Tree algorithm is assessed.

DNN algorithm: Deep Neural Networks (DNNs) are employed for more complex tasks.

The accuracy of the DNN is also evaluated.

Detection & Attack Types

The final step is where the accuracy of the DNN model in detecting specific types of

attacks is measured.

Destination

The process concludes with two steps:

Types of attacks This likely refers to identifying different attack categories.

Result: The overall outcome or findings based on the ML models and their accuracy.

This Sequence diagram outlines a systematic approach to using ML algorithms for

detecting various cyber-attacks or anomalies in data.

5.2.4.Class Diagram

A class diagram in the Unified Modeling Language (UML) is a type of static structure

diagram that describes the structure of a system by showing the system's classes, their

32

attributes, operations (or methods), and the relationships among the classes. It explains

which class contains information.

Figure 5.4 Class Diagram

Upload Cyber Attack Dataset

The process begins by uploading a dataset related to IOT releated . This dataset likely

contains information about various incidents, their attributes, and outcomes.

Data Validation

The flowchart splits into two paths based on whether the dataset is valid or not.

If the dataset is valid, it proceeds to the next steps.If invalid, there might be missing

values, inconsistencies, or other issues that need to be addressed.

Provide Initial Visualization

After validation, the dataset is visualized to gain insights.This step helps identify patterns,

outliers, and potential areas of interest.

Alert on Data Imbalance

Imbalanced datasets (where some classes have significantly more samples than others)

can affect model performance.An alert is raised if the dataset suffers from class

imbalance.

Pre-process Dataset

Data preprocessing involves cleaning, transforming, and preparing the dataset for model

training.Common steps include handling missing values, scaling features, and encoding

categorical variables.

Model Training

The flowchart shows two models being trained:

Auto Encoder Model: An unsupervised neural network used for feature extraction and

33

anomaly detection.

Decision Tree with PCA: A supervised model that uses Principal Component Analysis

(PCA) for dimensionality reduction.

Both models learn from the pre-processed data.

Comparison Graph and Table

The results from both models are compared.A graph (possibly showing performance

metrics) and a table (listing relevant statistics) are generated.

Detection & Attribute Attack Type

Finally, the flowchart concludes by detecting and attributing the type of cyber attack

based on the trained models’ predictions.

34

from tkinter
import *
from tkinter import
simpledialog
import
tkinter
from tkinter import
filedialog
from tkinter.filedialog import
askopenfilename
import numpy as
np
import matplotlib.pyplot
as plt
import pandas as
pd
from sklearn.metrics import
accuracy_score
from sklearn.model_selection import
train_test_split
import
os
from sklearn.metrics import
precision_score
from sklearn.metrics import
recall_score
from sklearn.metrics import
f1_score
import
webbrowser
import
pickle
from sklearn.decomposition
import PCA
from sklearn.tree import
DecisionTreeClassifier
from sklearn.preprocessing import
MinMaxScaler
import
keras
from keras import
layers
from keras.models import
model_from_json
from keras.utils.np_utils import
to_categorical
from keras.models import
Model
from sklearn.neural_network import
MLPClassifier

6.1 Source Code

CHAPTER-06

 Implementation

from tkinter import
messagebox

35

global
X,Y
global
dataset
global accuracy, precision, recall, fscore,
vector
global X_train, X_test, y_train, y_test,
scaler

'Response Injection (CMRI)', 'Malicious State Command Injection (MSCI)',

labels = ['Normal', 'Naive Malicious Response Injection (NMRI)', 'Complex Malicious',

Injection (MFCI)', 'Denial of Service (DoS)']

'Malicious Parameter Command Injection (MPCI)', 'Malicious Function Code

main =
tkinter.Tk()

Techniques") #designing main screen

main.title("Identification of Cyber Attack in Network using Machine Learning

main.geometry("1300x12
00")
#fucntion to upload
dataset
def
uploadDataset():

global filename,
dataset
text.delete('1.0',
END)
filename = filedialog.askopenfilename(initialdir="Dataset") #upload
dataset file
text.insert(END,filename+"
loaded\n\n")
dataset = pd.read_csv(filename) #read dataset from
uploaded file
text.insert(END,"Dataset
Values\n\n")
text.insert(END,str(dataset.hea
d()))
text.update_idletas
ks()
unique, count = np.unique(dataset['result'],
return_counts=True)
height =
count
bars =
labels
print(heig
ht)
print(bar
s)
y_pos =
np.arange(len(bars))
plt.bar(y_pos,
height)
plt.xticks(y_pos,
bars)

global filename, autoencoder, decision_tree, dnn,
encoder_model, pca

plt.xticks(rotation=
90)

36

plt.title("Various Cyber-Attacks Found in Dataset") #plot graph with
various attacks
plt.show
()

def
preprocessing():

text.delete('1.0',
END)
global dataset,
scaler
global X_train, X_test, y_train,
y_test, X, Y
#replace missing values
with 0
dataset.fillna(0, inplace =
True)
scaler = MinMaxScaler() #min max scaling for datset
normalization
with open('model/minmax.txt', 'rb')
as file:

scaler =
pickle.load(file)

file.close
()
dataset =
dataset.values
X =
dataset[:,0:dataset.shape[1]-1]
Y =
dataset[:,dataset.shape[1]-1]
indices =
np.arange(X.shape[0])
np.random.shuffle(indices) #shuffle
dataset
X =
X[indices]
Y =
Y[indices]
Y =
to_categorical(Y)
X =
scaler.transform(X)
text.insert(END,"Dataset after features
normalization\n\n")
text.insert(END,str(X)+"\n
\n")
text.insert(END,"Total records found in dataset :
"+str(X.shape[0])+"\n")
text.insert(END,"Total features found in dataset:
"+str(X.shape[1])+"\n\n")
X_train, X_test, y_train, y_test = train_test_split(X, Y,
test_size=0.2)
text.insert(END,"Dataset Train and Test
Split\n\n")

"+str(X_train.shape[0])+"\n")

text.insert(END,"80% dataset records used to train ML algorithms :

37

38

def calculateMetrics(algorithm, predict,
y_test):

a =
accuracy_score(y_test,predict)*1
00 p = precision_score(y_test,
predict,average='macro') * 100
r = recall_score(y_test,
predict,average='macro') * 100
f = f1_score(y_test,
predict,average='macro') * 100
accuracy.append
(a)
precision.append
(p)
recall.append
(r)
fscore.append
(f)
text.insert(END,algorithm+" Accuracy :
"+str(a)+"\n")
text.insert(END,algorithm+" Precision :
"+str(p)+"\n")
text.insert(END,algorithm+" Recall :
"+str(r)+"\n")
text.insert(END,algorithm+" FScore :
"+str(f)+"\n\n")

def
runAutoEncoder():

text.delete('1.0',
END)
global X_train, X_test, y_train,
y_test, X, Y
global
autoencoder
global accuracy, precision, recall,
fscore
accuracy =
[]
precision =
[]
recall =
[]
fscore =
[]
if
os.path.exists("model/encoder_model.js
on"): with open('model/encoder_model.json', "r") as

json_file:
loaded_model_json =
json_file.read()
autoencoder =
model_from_json(loaded_model_json)

json_file.clos
e()
autoencoder.load_weights("model/encoder_model_wei
ghts.h5")

"+str(X_test.shape[0])+"\n")

text.insert(END,"20% dataset records used to train ML algorithms :

39

40

else
:

filtered 32 times to get important features from dataset

encoding_dim = 256 # encoding dimesnion is 32 which means each row will be

input_size = keras.Input(shape=(X.shape[1],)) #we are taking
input size

dense layer to start filtering dataset with given 32 filter dimension

encoded = layers.Dense(encoding_dim, activation='relu')(input_size) #creating

another layer with input size as 784 for encoding

decoded = layers.Dense(y_train.shape[1], activation='softmax')(encoded) #creating

prediction result

autoencoder = keras.Model(input_size, decoded) #creating decoded layer to get

and input images

encoder = keras.Model(input_size, encoded)#creating encoder object with encoded

same input dimension

encoded_input = keras.Input(shape=(encoding_dim,))#creating another layer for

decoder_layer = autoencoder.layers[-1] #holding
last layer

last layer with encoded input layer

decoder = keras.Model(encoded_input, decoder_layer(encoded_input))#merging

metrics=['accuracy'])#compiling model

loss='categorical_crossentropy', autoencoder.compile(optimizer='adam',

validation_data=(X_test, y_test))#now start generating model with given Xtrain as input

hist = autoencoder.fit(X_train, y_train, epochs=300, batch_size=16, shuffle=True,

creating model will take 100 iterations

autoencoder.save_weights('model/encoder_model_weights.h5')#above line for

model_json = autoencoder.to_json()
#saving model
with open("model/encoder_model.json", "w") as
json_file:

json_file.write(model_j
son)

json_file.clo
se

print(autoencoder.summary())#printing model
summary
predict =
autoencoder.predict(X_test)
predict = np.argmax(predict,
axis=1)
testY = np.argmax(y_test,
axis=1)
calculateMetrics("AutoEncoder", predict,
testY)

def
runDecisionTree():

autoencoder._make_predict_func
tion()

41

global X_train, X_test, y_train, y_test, X,
Y, pca

autoencoder model

encoder_model = Model(autoencoder.inputs, autoencoder.layers[-1].output)#creating

vector = encoder_model.predict(X) #extracting features using
autoencoder
pca = PCA(n_components = 7) #applying PCA for features
reduction
vector =
pca.fit_transform(vector)
Y1 = np.argmax(Y,
axis=1)
X_train, X_test, y_train, y_test = train_test_split(vector, Y1,
test_size=0.2)
decision_tree = DecisionTreeClassifier() #defining
decision tree
decision_tree.fit(vector, Y1) #training with
decision tree
predict =
decision_tree.predict(X_test)

AutoEncoder\n")

text.insert(END,"Decision Tree Trained on New Features Extracted from

calculateMetrics("Decision Tree", predict,
y_test)

def
runDNN():

global autoencoder, decision_tree, encoder_model,
dnn, vector
global X_train, X_test, y_train,
y_test, X, Y
attack_type =
[]
for i in
range(len(vector)):

temp =
[]
temp.append(vector
[i])

predicting attack type

attack = decision_tree.predict(np.asarray(temp)) #using decision tree we are

attack_type.append(attac
k[0])

attack_type =
np.asarray(attack_type)
X_train, X_test, y_train, y_test = train_test_split(vector, attack_type,
test_size=0.2)
dnn = MLPClassifier() #defining DNN
algorithm
dnn.fit(vector, attack_type) #train DNN with various
attack type
predict = dnn.predict(X_test) #predict label forr
unknown attack
text.insert(END,"Attack Prediction using
DNN\n")

global autoencoder, decision_tree,
encoder_model, vector

42

43

def
attackAttributeDetection()
: text.delete('1.0',

END)
global autoencoder, decision_tree, encoder_model,
dnn, pca
filename =
filedialog.askopenfilename(initialdir="Dataset")
dataset =
pd.read_csv(filename)
dataset.fillna(0, inplace =
True)
values =
dataset.values
temp =
dataset.values
temp =
scaler.transform(temp)
test_vector = encoder_model.predict(temp) #extracting features using
autoencoder
test_vector =
pca.transform(test_vector)
print(test_vector.sha
pe)
predict =
dnn.predict(test_vector)
for i in
range(len(predict)):

if predict[i] ==
0:

ATTACK DETECTED\n\n")

text.insert(END,"New Test Data : "+str(values[i])+" ====> NO CYBER

else
:

DETECTED Attribution Label : "+str(labels[predict[i]])+"\n\n")

text.insert(END,"New Test Data : "+str(values[i])+" ====> CYBER ATTACK

def
graph():

Score',fscore[2]],['DNN','Accuracy',accuracy[2]],

['DNN','Precision',precision[2]],['DNN','Recall',recall[2]],['DNN','F1

],columns=['Algorithms','Performance
Output','Value'])

df.pivot("Algorithms", "Performance Output",
"Value").plot(kind='bar')

df =

pd.DataFrame([['AutoEncoder','Precision',precision[0]],['AutoEncoder','Recall',recall[0]

],['AutoEncoder','F1 Score',fscore[0]],['AutoEncoder','Accuracy',accuracy[0]],

['Decision Tree with PCA','Precision',precision[1]],['Decision Tree with

PCA','Recall',recall[1]],['Decision Tree with PCA','F1 Score',fscore[1]],['Decision Tree

with PCA','Accuracy',accuracy[1]],

calculateMetrics("DNN", predict,
y_test)

44

45

def
comparisonTable():

Name</th><th>Accuracy</th><th>Pr+ecision</th><th>Recall</th>"

output = "<html><body><table align=center border=1><tr><th>Algorithm

output+="<th>FSCORE</th>
</tr>"

n[0])+"</td><td>"+str(recall[0])+"</td><td>"+str(fscore[0])+"</td></tr>"

output+="<tr><td>AutoEncoder</td><td>"+str(accuracy[0])+"</td><td>"+str(precisio

</td><td>"+str(recall[2])+"</td><td>"+str(fscore[2])+"</td></tr>"

output+="<tr><td>DNN</td><td>"+str(accuracy[2])+"</td><td>"+str(precision[2])+"

output+="</table></body></ht
ml>"
f = open("table.html",
"w")
f.write(outp
ut)
f.close
()
webbrowser.open("table.html",ne
w=2)

font = ('times', 16,
'bold')

Techniques')

title = Label(main, text='Detection of Cyber Attack in Network using Machine Learning

title.config(bg='greenyellow',
fg='dodger blue')
title.config(font=f
ont)
title.config(height=3,
width=120)
title.place(x=0,y
=5)
font1 = ('times', 12,
'bold')
text=Text(main,height=20,width
=150)
scroll=Scrollbar(te
xt)
text.configure(yscrollcommand=scro
ll.set)
text.place(x=50,y=1
20)
text.config(font=fo
nt1)
font1 = ('times', 13,
'bold')

output+="<tr><td>Decision Tree with

PCA</td><td>"+str(accuracy[1])+"</td><td>"+str(precision[1])+"</td><td>"+str(recal

l[1])+"</td><td>"+str(fscore[1])+"</td></tr>"

plt.show
()

46

47

uploadButton.place(x=50,y=
550)
uploadButton.config(font=f
ont1)
processButton = Button(main, text="Preprocess Dataset",
command=preprocessing)
processButton.place(x=330,y=
550)
processButton.config(font=f
ont1)

command=runAutoEncoder)

Algorithm", AutoEncoder text="Run Button(main, = autoButton

autoButton.place(x=630,y=
550)
autoButton.config(font=fo
nt1)

command=runDecisionTree)

PCA", with Tree Decision text="Run Button(main, = dtButton

dtButton.place(x=920,y=
550)
dtButton.config(font=fo
nt1)
dnnButton = Button(main, text="Run DNN Algorithm",
command=runDNN)
dnnButton.place(x=50,y=
600)
dnnButton.config(font=fo
nt1)

command=attackAttributeDetection)

attributeButton = Button(main, text="Detection & Attribute Attack Type",

attributeButton.place(x=330,y
=600)
attributeButton.config(font=f
ont1)
graphButton = Button(main, text="Comparison Graph",
command=graph)
graphButton.place(x=630,y=
600)
graphButton.config(font=f
ont1)
tableButton = Button(main, text="Comparison Table",
command=comparisonTable)
tableButton.place(x=920,y=
600)
tableButton.config(font=fo
nt1)
main.config(bg='LightSkyB
lue')
main.mainloop
().

command=uploadDataset)

uploadButton = Button(main, text="Upload SWAT Water Dataset",

48

49

Import Statements

The code begins with several import statements. These are used
toimport necessary
modules and functions from Python libraries.For example, from tkinter
import * imports
all functions and classes from the tkinter library, which is commonly used
for creating
graphical user interfaces (GUIs).Other import statements include numpy,
matplotlib,
pandas, sklearn, keras, and
more.
Global Variables

The code defines several global variables such as filename, autoencoder,
decision_tree,
dnn, encoder_model, pca, X, Y, dataset, accuracy, precision, recall,
fscore, vector,
X_train, X_test, y_train, y_test, and scaler.These variables are used
throughout the code
to store data, models, and other
information.
Tkinter GUI Setup

The main GUI window is created using tkinter.Tk().The title of the
window is set to
“Identification of Cyber Attack in Network using Machine Learning
Techniques”.The
window dimensions are set to 1300x1200
pixels.
Function Definitions

The code defines two
functions:
uploadDataset(): uploadDataset() allows the user to select a dataset file using
a file dialog.
The selected file is then read into a Pandas DataFrame (dataset).The
function displays the
loaded filename and the first few rows of the dataset.It also generates a bar
chart showing
the distribution of various cyber attacks found in
the dataset.
preprocessing(): It performs data preprocessing
 replaces missing values with
0.Normalizes features using Min-Max scaling.Shuffles the dataset.Splits
the dataset into
training and testing sets.Converts labels to
categorical format.
Visualization

The code includes a visualization step where it plots a bar chart showing
the distribution
of different cyber attacks in the
dataset.
Function Definition:The calculateMetrics function takes three
arguments: algorithm,
predict, and y_test.algorithm represents the name of the machine learning
algorithm being

Code Explanation

50

contains the true labels (ground truth) for the test
dataset.
Calculating Metrics:Inside the function, the following metrics are
calculated:
Accuracy: The percentage of correctly predicted instances out of the
total instances.
Precision: The ability of the model to correctly predict positive instances
(true positives)
relative to all predicted positive instances (true positives + false
positives).
Recall: The ability of the model to correctly predict positive instances
(true positives)
relative to all actual positive instances (true positives + false
negatives).
F1 Score: The harmonic mean of precision and recall, which balances both
metrics.Each
metric is multiplied by 100 to express it as a
percentage.
Appending Metrics to Lists:The calculated accuracy, precision, recall, and
F1 score are
appended to global lists (accuracy, precision, recall, and fscore).These
lists likely store
metrics for multiple algorithms or iterations.Updating the Text
Widget:The function
inserts the calculated metrics into a text widget (text) using the insert
method.The format
is: <algorithm> <Metric>: <Value> (e.g., “Decision Tree Accuracy:
85.5”).The END
argument ensures that the new text is added at the end of the
existing content.

6.2 Read CSV file

The attacks found in dataset and dataset contains above labels as integer value of

evaluated.predict contains the predicted labels (output) from the
algorithm.y_test

51

The whole dataset is used in this phase. Seven different methods of
machine learning
were implemented on the entire dataset, and we used feature sets that were
extracted for
each attack
separately.

its index for example NORMAL label index will be 0 and continues up to 8 class labels.

Below screen showing dataset details.first row contains dataset column names and

remaining rows contains dataset values and in last column we have attack type from label

0 to 7. We will used above dataset to train propose Auto Encoder, decision tree and DNN

algorithms. It is significant to decrease thecount of features and just use the features

needed totrain and test the algorithms to find a lightweight security solution appropriate

for IoT systems.

Figure 6.2.1 Csv
train set

Figure 6.2.2 CSV
Test set

52

Figure6.3.1
GUI

6.3 Output:

1)Upload SWAT Water Dataset: Using this module we will upload dataset

to application and then read dataset and then find different attacks found in dataset

Figure 6.5 Swat Dataset

It reads the file and produces a visual document of the features extracted, and also

offers a csv file of the dataset. This process was primarily designed to improve

classifiers ’predictive capabilities by extracting new dataset features.

53

Figure 6.6 Upload swat dataset

Preprocess Dataset: using this module we will replace all missing values with 0 and

then apply MIN-MAX scaling algorithm to normalized features values .

Figure 6.7: Preprocess the dataset

During the machine learning process, data are needed so that learning can take place. In

addition to the data required for training, test data are needed to evaluate the performance

of the algorithm min order to see how well it works. we considered 80% of the Bot-IoT

dataset to be the training data and the remaining 20% to be the testing data.

Pre-processing data transformation operations are used to transform the dataset into a

structure suitable for machine learning. This step also includes cleaning the dataset by

2)

54

removing irrelevant or corrupted data that can affect the accuracy of the dataset, which

makes it more efficient.

Applying machine learning algorithms on each attack in the dataset separately.

When evaluating the performance of machine-learning models, it is crucial to define

performance measures that are suitable for the task to be solved. In order to evaluate our

results.

3)Run Auto Encoder Algorithm: using this module we will tra ined Auto Encoder deep

learning algorithm and then extract features from tat model.

Figure 6.8 Auto Encoder

4).Run Decision Tree with PCA: extracted features from Auto Encoder will get transform.

Figure 6.9 Decision tree

55

5) Run DNN Algorithm: predicted decision tree label will further train with DNN

(deepneural network) algorithm to detect and attribute attacks.

Figure 6.10: DNN algorithm

6) Detection & Attribute Attack Type: using this module we will upload unknown or un-

label TEST DATA and then DNN will predict attack type.

Figure 6.11 Test dataset

Comparison Graph: Using this module we will plot comparison graph between all

algorithms.

Figure 6.12 Comparison Graph

7)

56

8)Comparison Table: using this module we will display comparison table of all algorithms

which contains metrics like accuracy, precision, recall and FSCORE.

Figure 6.13Comparison Table

Detected various attacks and now click on ‘Comparison Graph’ button to get below

graph.graph x-axis represents algorithms names and y-axis represents different metric

values such as precision, recall, accuracy and F_SCORE with different colour bars and in

all algorithms DNN got high accuracy and now close above graph and then click on

‘Comparison Table’ to get below comparison table of all algorithms.

57

CHAPTER-07

Testing

Testing is the process where the test data is prepared and is used for testing the

modules individually and later the validation given for the fields. Then the system

testing takes place which makes sure that all components of the system property

functions as a unit. The test data should be chosen such that it passed through all

possible condition. The following is the description of the testing strategies, which were

carried out during the testing period.

7.1 System testing

Testing has become an integral part of any system or project especially in the field of

information technology. The importance of testing is a method of justifying, if one is

ready to move further, be it to be check if one is capable to with stand the rigors of a

particular situation cannot be underplayed and that is why testing before development is

so critical. When the software is developed before it is given to user to user the software

must be tested whether it is solving the purpose for which it is developed. This testing

involves various types through which one can ensure the software is reliable. The program

was tested logically and pattern of execution of the program for a set of data are repeated.

Thus the code was exhaustively checked for all possible correct data and the outcomes

were also checked.

7.2 Types of testings:

 7.2.1 Module Testing:

To locate errors, each module is tested individually. This enables us to detect error and

correct it without affecting any other modules. Whenever the program is not satisfying

the required function, it must be corrected to get the required result. Thus all the modules

are individually tested from bottom up starting with the smallest and lowest modules and

proceeding to the next level. Each module in the system is tested separately. For example

the job classification module is tested separately. This module is tested with different job

and its approximate execution time and the result of the test is compared with the results

that are prepared manually. Each module in the system is tested separately. In this system

the resource classification and job scheduling modules are tested separately.

7.2.2 Intergration testing

58

After the module testing, the integration testing is applied. When linking the modules

there may be chance for errors to occur, these errors are corrected by using this testing.

In this system all modules are connected and tested. The testing results are very correct.

Thus the mapping of jobs with resources is done correctly by the system.

 7.2.3 Acceptance testing

When that user fined no major problems with its accuracy, the system passers through a

final acceptance test. This test confirms that the system needs the original goals,

objectives and requirements established during analysis without actual execution which

elimination wastage of time and money acceptance tests on the shoulders of users and

management, it is finally acceptable and ready for the operation.

7.2.4 Behavioral Testing

The final stage of testing focuses on the software’s reactions to various activities rather

than on the mechanisms behind these reactions. In other words, behavioral testing, also

known as black-box testing, presupposes running numerous tests, mostly manual, to see

the product from the user’s point of view. QA engineers usually have some specific

information about a business or other purposes of the software (‘the black box’) to run

usability tests, for example, and react to bugs as regular users of the product will do.

Behavioral testing also may include automation (regression tests) to eliminate human

error if repetitive activities are required. For example, you may need to fill 100

registration forms on the website to see how the product copes with such an activity, so

the automation of this test is preferable.

7.2.5 Unit testing

Unit testing is a critical component in the development of machine learning-based

systems for identifying cyber attacks in smart IoT networks. It involves validating

individual parts or units of the code to ensure that each one functions correctly on its own.

In the context of cyber attack detection, unit testing focuses on various components such

as data preprocessing scripts, feature extraction functions, individual machine learning

model components, and utility functions.

Data preprocessing is a foundational step in preparing raw IoT network data for

machine learning models. Unit tests for data preprocessing functions ensure that

operations like data cleaning, normalization, and transformation are performed

accurately.

Feature extraction functions are another vital area for unit testing. These functions

are responsible for converting raw data into meaningful features that machine learning

59

models can utilize. Unit tests can validate that these functions correctly derive features

such as IP addresses, port numbers, protocol types, and payload sizes from the raw

network traffic data. Ensuring the accuracy of these features is essential for the model's

performance in detecting anomalies and cyber attacks.

When it comes to the machine learning models themselves, unit tests focus on

individual components and algorithms used within these models.Unit testing in the

identification of cyber attacks using machine learning in smart IoT networks is essential

for validating the functionality of individual components. . This forms a robust foundation

for building and maintaining effective cyber attack detection systems that can safeguard

smart IoT networks against evolving threats.

7.3 Test cases

Testing a system for identifying cyber attacks using machine learning in smart

IoT networks requires a variety of test cases to ensure the system performs accurately

and efficiently under different scenarios.

Here are detailed test cases that cover various aspects of the system:

Table 7.1: Test cases

Test

Case Id

Test case

name

Test case

description

Test steps Test

case

status

Test

priority

 Step Expected Actual

01 Upload the

tasks dataset

Verify the

file is loaded

or not

If dataset

is not

uploaded

It cannot

display the

file

uploaded

File is

uploaded

which

display a

task

waiting

time

High High

02 Upload

patients

dataset

Verify either

dataset

loaded or not

If dataset

is not

upload

It cannot

display

dataset

reading

process

complete

It can

display

dataset

reading

process

completed

Low High

03 Preprocessing Whether

preprocessi

ng on the

dataset

applied or

not

If not

applie d

It

cannot

display

the

It can

display the

necessa ry

data for

further

process

Medi

um

High

60

necessar

y data

for

further

Process

04 Prediction

Random

Forest

Whether

Predictio

n

algorithm

applied

on the

data or

not

If not

applie d

Random

tree is not

generate d

Rando m

tree is

generat ed

High High

05 Recommendati

on

Whether

predicted

data is

displayed or

not

If not

displa

yed

It cannot

view

predictio

n

containi

ng

patient

Data

It can

view

predicti

on

containi

ng patient

Data

High High

06 Noisy Records

Chart

Whether the

graph is

displayed or

not

If graph

is not

displa

yed

It does

not show

the

variation

s in

between

clean

and

noisy

Records

It shows

the

variatio

ns in

betwee n

clean

and

noisy

records

Low Mediu m

The system detects and mitigates attacks without compromising its functionality.

These test cases cover a comprehensive range of scenarios to ensure the reliability,

61

accuracy, and robustness of the system for identifying cyber attacks using machine

learning in smart IoT networks. Conducting these tests helps validate that the system

performs well under various conditions and meets security and performance

requirements.

62

CHAPTER-08

RESULT

Machine learning (ML) in smart IoT networks has been increasingly utilized for the

identification of cyber attacks due to its capability to analyze vast amounts of data and

detect patterns indicative of malicious activities.

some malicious function command injection found :

Navie Malicious Response Injection:

Naive malicious response injection refers to a simplistic or straightforward method of

injecting malicious content into a response generated by a web application or service.

This type of attack typically targets vulnerabilities in the application's output mechanisms,

such as HTML, JavaScript, or other markup languages, with the goal of executing

unauthorized actions or compromising the security of the system or its users.

Complex Malicious:

"Complex injection" typically refers to more sophisticated and intricate methods of

injecting malicious code or commands into vulnerable systems or applications , which

rely on straightforward exploitation of known vulnerabilities, complex injection attacks

often involve advanced evasion techniques or manipulation of complex data structures to

bypass security controls and achieve their objectives.

Response Injection:

"Response injection" refers to a type of cyber attack where an attacker injects malicious

content into the response generated by a web application or service which involve

injecting malicious content into the input fields or parameters of a request, response

injection attacks occur when the application fails to properly sanitize or validate user-

generated content before including it in the response sent back to the client.

Malicious State Command Injection:

"Malicious State Command Injection" refers to a type of cyber attack where an attacker

exploits vulnerabilities in the management of application or system state to inject and

execute malicious commands. This attack is a variation of command injection, where the

attacker manipulates the state of an application or system to execute unauthorized

commands, rather than directly injecting commands into input fields or parameter

Malicious Function Command Injection:

Function command injection is a type of cyber attack where an attacker injects malicious

63

code into a function or command within an application, often with the goal of executing

unauthorized commands or manipulating the behavior of the application or system.

Dos :

A Denial-of-Service (DoS) attack is a malicious attempt to disrupt the normal functioning

of a targeted server, service, or network by overwhelming it with a flood of illegitimate

traffic or resource requests.

Normal:

It refers to legitimate activities and behaviors within the IoT network that are considered

typical or expected under normal operating conditions.

Figure 8.1: Result.

The above paragraph specify that the attacks are identified with in the specified

conditions.

In the results of the algorithms, the following values are examined in order detect or

identify the accuracy, precision, recall, and f_Score.

64

CHAPTER-09

CONCLUSION

Identifying cyber attacks in smart IoT networks through machine learning

presents a promising approach to bolstering network security in an increasingly

interconnected world. Through our exploration of this methodology, several key

conclusions emerge.

Firstly, the integration of machine learning techniques offers a dynamic and

adaptive means of discerning normal network behavior from potentially malicious

activities. By analyzing vast amounts of data generated by IoT devices, machine learning

models can learn intricate patterns and anomalies, enabling them to detect and respond to

emerging threats in real-time.Furthermore, the effiency of machine learning in cyber

attack identification hinges on the quality and diversity of the data available for training.

Robust datasets that encompass a wide range of network activities and attack scenarios

are essential for enhancing the accuracy and reliability of detection algorithms.

Additionally, ongoing data collection and model refinement are crucial for adapting to

evolving cyber threats and maintaining a high level of detection efficacy over time.

Moreover, the deployment of machine learning-based detection systems in smart IoT

networks necessitates careful consideration of scalability, resource constraints, and

privacy concerns. Implementing lightweight and efficient algorithms capable of running

on resource-constrained IoT devices is essential for minimizing computational overhead

and ensuring seamless integration into existing network infrastructure. The application

of machine learning in the identification of cyber attacks within smart IoT networks

offers a promising approach to enhancing security posture and mitigating risks

associated with increasingly complex and interconnected IoT environments.

By leveraging machine learning algorithms trained on historical data to recognize

patterns of normal behavior, organizations can detect deviations indicative of cyber

attacks, including intrusion attempts, data exfiltration, malware infections, and denial-of-

service (DoS) attacks. Furthermore, machine learning enables proactive threat detection

and response by continuously monitoring and analyzing real-time data streams from IoT

devices, enabling organizations to swiftly identify and mitigate security incidents before

they escalate. However, effective implementation of machine learning-based security

solutions requires addressing challenges such as data privacy, model interpretability, and

65

adversarial attacks, while also ensuring seamless integration with existing security

infrastructure and compliance with regulatory requirements. Moving forward, ongoing

research and development efforts are necessary to advance the capabilities of machine

learning in smart IoT security and stay ahead of evolving cyber threats.

Cyber attacks pose a significant and growing threat in our interconnected digital

world. As technology advances, so do the capabilities and tactics of malicious actors,

ranging from individual hackers to sophisticated state-sponsored groups. The

consequences of cyber attacks can be severe, ranging from financial losses and data

breaches to disruption of critical infrastructure and even endangering lives.To mitigate

the risks posed by cyber attacks, it's essential for individuals, organizations, and

governments to prioritize cybersecurity measures. This includes implementing robust

security protocols, regularly updating software and systems, conducting thorough risk

assessments, and educating users about best practices for online safety.

66

CHAPTER-10

Future Enhancement

It is not possible to develop a system that makes all the requirements of the user.

User requirements keep changing as the system is being used. The power of artificial

intelligence, organizations can enhance their ability to detect and mitigate cyber threats,

thereby safeguarding the integrity, confidentiality, and availability of IoT-driven services

and applications in the digital age. However, continual research, collaboration, and

innovation are imperative to stay ahead of adversaries and effectively counter emerging

cyber threats in the ever-evolving landscape of IoT security.

Some of the future enhancements that can be done to this system are:

Multi-Modal Data Fusion: Incorporate multiple sources of data, such as network

traffic logs, device logs, sensor readings, and metadata, to improve the accuracy and

robustness of cyber attack detection.

Anomaly Detection: Develop anomaly detection algorithms to identify abnormal

behavior patterns in IoT networks, enabling proactive detection of emerging cyber threats

and zero-day attacks.

Enhance the interpretability and transparency of machine learning

models by integrating explainable AI techniques to provide insights into the decision-

making process and facilitate human understanding and trust in the system.

Develop adaptive algorithms that can dynamically adjust their

behavior and parameters based on changing environmental conditions, evolving cyber

threats, and feedback from cybersecurity analysts to ensure continuous improvement and

optimization.

Integrate privacy-preserving methods such as

federated learning, differential privacy, and secure multiparty computation to protect

sensitive data while still enabling collaborative model training across distributed IoT

networks.

Explore the integration of edge computing technologies

to perform data preprocessing, model inference, and decision-making closer to IoT

Edge Computing Integration:

Privacy-Preserving Techniques:

Dynamic Adaptation:

Explainable AI:

67

devices, reducing latency, bandwidth usage, and dependence on centralized cloud

resources.

In conclusion, while significant strides have been made in identifying cyber attacks using

machine learning in smart IoT networks, there remains substantial potential for future

enhancements. Continued advancements in machine learning algorithms, particularly in

the realms of deep learning and reinforcement learning, promise to increase the accuracy

and speed of anomaly detection. Integrating more sophisticated, context-aware models

that can understand the intricacies of IoT environments will be crucial.Finally, developing

more robust and adaptive systems capable of evolving with emerging threats will be

essential in maintaining resilient IoT networks in the face of an ever-changing cyber threat

landscape.

68

REFERENCES

[1] The White House, “Making college affordable,” https://

www:whitehouse:gov/issues/education/higher-education/ making-college-affordable,

2016.

[2] Complete College America, “Four-year myth: Making college more affordable,”

http://completecollege:org/wp-content/uploads/2014/ 11/4-Year-Myth:pdf, 2014.

[3] H. Cen, K. Koedinger, and B. Junker, “Learning factors analysis–a general method

for cognitive model evaluation and improvement,” in International Conference on

Intelligent Tutoring Systems. Springer, 2006, pp. 164–175.

[4] M. Feng, N. Heffernan, and K. Koedinger, “Addressing the assessment challenge with

an online system that tutors as it assesses,” User Modeling and User-Adapted Interaction,

vol. 19, no. 3, pp. 243–266, 2009.

[5] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. McKenzie, J.-W. Chou, P.-H. Chung,

C.-H. Ho, C.-F. Chang, Y.-H. Wei et al., “Feature engineering and classifier ensemble for

kdd cup 2010,” in Proceedings of the KDD Cup 2010 Workshop, 2010, pp. 1–16.

[6]Y. Meier, J. Xu, O. Atan, and M. van der Schaar, “Personalized grade prediction: A

data mining approach,” in Data Mining (ICDM), 2015 IEEE International Conference on.

IEEE, 2015, pp. 907–912.

[7] C. G. Brinton and M. Chiang, “Mooc performance prediction via clickstream data and

social learning networks,” in 2015 IEEE Conference on Computer Communications

(INFOCOM). IEEE, 2015, pp. 2299– 2307.

[8] KDD Cup, “Educational data minding challenge,” https://pslcdatashop:

web:cmu:edu/KDDCup/, 2010.

[9] Y. Jiang, R. S. Baker, L. Paquette, M. San Pedro, and N. T. Heffernan, “Learning,

moment-by-moment and over the long term,” in International Conference on Artificial

Intelligence in Education. Springer, 2015, pp. 654–657.

69

[10] C. Marquez-Vera, C. Romero, and S. Ventura, “Predicting school failure

using data mining,” in Educational Data Mining 2011, 2010.

[11] Y.-h. Wang and H.-C. Liao, “Data mining for adaptive learning in a

tesl-based e- learning system,” Expert Systems with Applications, vol. 38, no.

6, pp. 6480–6485, 2011.

[12] N. Thai-Nghe, L. Drumond, T. Horvath, L. Schmidt-Thieme ´ et al.,

“Multi-relational factorization models for predicting student performance,” in

Proc. of the KDD Workshop on Knowledge Discovery in Educational Data.

Citeseer, 2011.

70

Annexure – I

List of Figures

Figure Figure Names Page Number

Figure 3.1 System Architecture 12

Figure 5.1 Use case diagram 27

Figure 5.2 Activity diagram 29

Figure 5.3 Sequence diagram 31

Figure 5.4 Class diagram 32

Figure 6.1 Csv train set 51

Figure 6.2 Csv test set 51

Figure 6.3 GUI 52

Figure 6.4 Swat dataset 52

Figure 6.5 Upload dataset 52

Figure 6.6 Preprocess data 53

Figure 6.7 Auto Encoder 53

Figure 6.8 Decision tree Algorithm 54

Figure 6.9 DNN Algorithm 54

Figure 6.10 Test dataset 55

Figure 6.11 Comparision Graph 55

Figure 6.12 Comparision Table 55

Figure 8.1 Result 63

71

Annexure –II

List of Symbols/Acronyms

S No. Abbreviation Full form

1. ML Machine Learning

2. IoT Internet of Things

3. Bot-IoT Robot Network

4. SIEM Security Information And

Event Management

5. IDS Intrusion Detection System

6. DNN Deep Neural Network

7. MLP Multi-layer Perceptron

8. ANN Artifical Neural Network

9. IDPS Intrusion detection and
prevention

system
10. NIST National Institute of Standards and

Technology

11. PCA Principal Component Analysis

12. csv Comma-separated values

13. GUI Graphical User Interface

14. UML Unified Modeling Language

15. DoS Denial-of-Service

Annexure – III

List of tables

Table Name of the table Page No.

Table 7.1 Test Cases 59

