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ABSTRACT 
 
 

Cyber-crime is proliferating everywhere, exploiting every kind of vulnerability to the 

computing environment. Ethical Hackers pay more attention towards assessing vulnerabilities and 

recommending mitigation methodologies. The development of effective techniques has been an 

urgent demand in the field of the cyber security community. Most techniques used in today’s IDS 

are not able to deal with the dynamic and complex nature of cyber-attacks on computer networks. 

Machine learning for cyber security has become an issue of great importance recently due to the 

effectiveness of machine learning in cyber security issues. Machine learning techniques have been 

applied for major challenges in cyber security issues like intrusion detection, malware 

classification and detection, spam detection and phishing detection. Although machine learning 

cannot automate a complete cyber security system, it helps to identify cyber security threats more 

efficiently than other software-oriented methodologies, and thus reduces the burden on security 

analysts. Hence, efficient adaptive methods like various techniques of machine learning can result 

in higher detection rates, lower false alarm rates and reasonable computation and communication 

costs. Our main goal is that the task of finding attacks is fundamentally different from these other 

applications, making it significantly harder for the intrusion detection community to employ 

machine learning effectively. 

Keywords: Cyber-crime, Machine learning, Cyber-security, Intrusion detection system.
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CHAPTER-01 

INTRODUCTION 

1.1 Introduction 

Research into identifying cyber- attacks using machine learning in smart IoT 

networks focuses on developing algorithms and methodologies to detect and mitigate 

various types of cyber threats within interconnected IoT systems. This area of study is 

crucial due to the proliferation of IoT devices and the increasing sophistication of cyber- 

attacks targeting these devices. The process typically involves collecting and analyzing 

data from IoT devices to identify patterns indicative of malicious activity. Machine 

learning algorithms are then trained on this data to recognize these patterns and 

distinguish between normal and malicious behavior. Various techniques such as anomaly 

detection, supervised learning, and reinforcement learning may be employed depending 

on the nature of the cyber threats and the characteristics of the IoT network. Key 

challenges in this field include the vast amount of data generated by IoT devices, the need 

for real-time detection to respond promptly to threats, and the limited computational 

resources available on IoT devices. Researchers are continually exploring novel 

approaches to address these challenges and improve the effectiveness of cyber -attack 

detection in smart IoT networks. Additionally, ensuring the privacy and security of the 

data collected from IoT devices is essential to maintaining user trust and compliance with 

regulation. Traditional security measures, such as firewalls and antivirus software, are 

often insufficient to protect IoT environments due to their distributed nature, diverse 

communication protocols, and resource-constrained devices. In this context, leveraging 

advanced technologies such as Machine Learning (ML) holds tremendous promise for 

enhancing cybersecurity and defending against evolving threats. Machine Learning, a 

subset of artificial intelligence, enables computers to learn from data and make 

predictions or decisions without being explicitly programmed. By analyzing vast amounts 

of data generated by IoT devices, ML algorithms can identify patterns, anomalies, and 

indicators of potential cyber- attacks. This proactive approach to threat detection 

empowers organizations to stay ahead of adversaries and mitigate risks before they 

escalate into full-blown security incidents. We explore the intersection of Machine 

Learning and IoT security, focusing specifically on the application of ML algorithms for 

spotting cyber- attacks within IoT environments. We examine the challenges posed by 

securing IoT ecosystems, discuss the limitations of traditional security approaches, and 

highlight the unique opportunities afforded by ML-based solutions. Furthermore, we 
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delve into the key outcomes and benefits of leveraging ML and IoT programs for cyber - 

attack detection, including improved threat detection, enhanced situational awareness, 

and faster incident response.The rate of attacks against networked systems has increased 

melodramatically, and the strategies used by the attackers are continuing to evolve. For 

example, the privacy of important information, security of stored data platforms, 

availability of knowledge, etc. Depending on these problems, cyber terrorism is one of 

the most important issues in today’s world. Cyber terror, which caused a lot of problems 

to individuals and institutions, has reached a level that could threaten public and country 

security by various groups such as criminal organizations, professional persons, and cyber 

activists. Intrusion detection is one of the solutions to these attacks. A free and effective 

approach for designing Intrusion Detection Systems (IDS) is Machine Learning. In this 

study, were used to detect port scan attempts based on the dataset with a software-based 

application that is used to identify malicious behavior in the network . Based on the 

detection technique, intrusion detection is classified into anomaly-based and signature- 

based. IDS developers employ various techniques for intrusion detection. Information 

security is the process of protecting information from unauthorized access, usage, 

disclosure, destruction, modification, or damage. The terms ”Information security”, 

”computer security” and ” information insurance” are often used interchangeably. 

1.2 Problem statement 

Machine learning has emerged as a promising solution for enhancing the security of IoT 

networks by enabling proactive threat identification and mitigation. However, several 

challenges hinder the effective application of machine learning techniques in this context. 

These challenges include: inherent vulnerabilities of IoT devices and networks make 

them prime targets for cyber- attacks. Traditional security mechanisms often fall short in 

effectively identifying and mitigating these threats due to the dynamic and 

heterogeneous nature of IoT environments. Therefore, there is a pressing need to 

develop advanced and adaptive approaches for the timely detection pose significant 

challenges. 

1.2.1 Real-time Detection: Cyber- attacks in IoT networks often require real-time 

detection and response to prevent or minimize their impact. Machine learning 

algorithms must be capable of analyze streaming data and identifying 

anomalies in real-time. 

1.2.2 Resource Constraints: Many IoT devices operate with limited computational 

resources, such as processing power, memory, and energy. Machine learning 

models deployed on these devices must be lightweight and energy-efficient 
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while maintaining high detection accuracy. 

1.2.3 Adaptability to Emerging Threats: The threat landscape in IoT networks is 

constantly evolving, with adversaries employing sophisticated techniques to 

evade detection. Machine learning models must be adaptive and capable of 

learning from new attack patterns to effectively counter emerging threats. 

1.2.4 Privacy and Data Security: IoT devices often collect sensitive data, raising 

concerns about privacy and data security. Machine learning algorithms must 

operate in a privacy- preserving manner, ensuring that sensitive information is 

not compromised during the detection process. 

Addressing these challenges requires interdisciplinary research efforts aimed at 

developing innovative machine learning techniques tailored for cyber- attack 

identification in smart IoT networks. Additionally, there is a need for comprehensive 

evaluation frameworks and benchmark datasets to assess the effectiveness and scalability 

of machine learning-based security solutions in real-world IoT deployments. By 

overcoming these challenges, we can enhance the security and resilience of smart IoT 

networks, safeguarding critical infrastructure and ensuring the integrity of IoT-enabled 

services. 

1.3 Scope of Research 

The objective of a project focused on identifying cyber -attacks using machine learning 

in smart IoT networks can be summarized as follows: 

1.3.1 Enhanced Security: The primary goal is to enhance the security posture of 

smart IoT networks by developing effective techniques to detect and mitigate 

cyber- attacks in real- time. 

1.3.2 Detection of Diverse Threats: The project aims to identify various types of 

cyber threats targeting IoT devices, including malware infections, distributed 

denial-of-service (DDoS) attacks, intrusions, data exfiltration attempts, and 

other forms of malicious activity. 

1.3.3 Machine Learning Integration: Leveraging the capabilities of machine 

learning algorithms, the project seeks to design intelligent systems capable of 

automatically recognizing patterns indicative of cyber -attacks within the vast 

and heterogeneous data generated by IoT devices. 

1.3.4 Real-time Response: The project emphasizes the importance of real-time 

detection and response to cyber threats, enabling rapid mitigation actions to be 

taken to prevent or minimize the impact of attacks on IoT networks and their 

associated systems. 
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1.3.5 Scalability and Efficiency: Solutions developed within the project aim to be 

scalable to accommodate the increasing number of IoT devices in networks 

while maintaining efficiency in terms of computational resources and response 

times. 

1.3.6 Adaptability and Robustness: The project intends to create detection 

mechanisms that are adaptable to evolving cyber threats and robust against 

evasion techniques employed by attackers, ensuring continued effectiveness 

over time. 

1.3.7 Privacy and Compliance: Emphasis is placed on preserving the privacy of 

user data collected from IoT devices and ensuring compliance with relevant 

regulations and standards governing data protection and cybersecurity. 

By achieving these objectives, the project aims to contribute to the overall security and 

reliability of smart IoT networks, fostering trust among users and stakeholders and 

facilitating the widespread adoption of IoT technologies in various. 

1.4 Existing system 

When an IDS detects suspicious activity, the violation is typically reported to a security 

information and event management (SIEM) system where real threats are ultimately 

determined amid benign traffic abnormalities or other false alarms. However, the longer 

it takes to distinguish a threat, the more Most techniques used in today's IDS are not able 

to deal with the dynamic and complex nature of cyber-attacks on computer networks. This 

is a huge concern as encryption is becoming more prevalent to keep our datasecure. One 

significant issue with an IDS is that they regularly alert you to false positives. In many 

cases false positives are more frequent than actual threats. If they don't take care to 

monitor the false positives, real attacks can slip damage can be done. 

Disadvantage of Existing System : 

1.4.1 One of the primary challenges associated with IDS is the generation of false 

positive alerts. 

1.4.2 Implementing and managing IDS can be complex and resource-intensive, 

particularly in large and heterogeneous network environments. 

1.4.3 IDS typically focus on monitoring network traffic and may have limited 

visibility into other layers of the technology stack, such as application-level 

protocols, host-based activities, or encrypted communications. 

1.5 Proposed System 

Machine Learning algorithms can help identify and respond to cyber attacks efficiently. 

Classification algorithms, such as Decision Trees, Autoencoders, and Deep Neural 
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Networks (DNN), can be used to categorize whether an attack. 

Decision Trees: A supervised learning method that segments data based on patterns to 

predict the outcome class, distinguishing between normal traffic and various attack types. 

Autoencoders: These unsupervised learning models identify patterns in data by encoding 

and decoding information, which can help distinguish anomalies or malicious behavior. 

Deep Neural Networks (DNNs): Complex multi-layer models capable of learning 

intricate patterns and relationships in data, making them useful for accurate classification 

of cyber threats. 

Advantages of proposed system 

• Acquiring and labeling such data can be time-consuming and resource-intensive, 

particularly for rare or emerging cyber threats. 

• This can lead to poor performance on unseen data and an increased susceptibility 

to false positives or false negatives. 

The proposed system leverages machine learning to provide robust and real-time 

identification of cyber attacks in smart IoT networks. By integrating advanced data 

collection, preprocessing, feature extraction, and machine learning techniques, the 

system aims to enhance the security and resilience of IoT networks against evolving 

cyber threats. 

1.6 Organization of Report 

Creating an organizational report on the identification of cyber attacks using machine 

learning in smart IoT networks involves a detailed analysis of the current state of IoT 

security, machine learning techniques applied to cybersecurity, and the integration of 

these technologies to enhance security measures. Here’s a structured outline to guide your 

report: 

➢ Title 

o Identification of Cyber Attacks Using Machine Learning in Smart IoT Networks 

➢ Executive Summary 

o The Objective is to provide an overview of how machine learning can be 

employed to identify and mitigate cyber attacks in smart IoT networks.It 

Summarize the effectiveness, challenges, and future prospects of using machine 

learning for IoT security.Highlights key actions and strategies for organizations 

to enhance IoT security using machine learning. 

➢ Introduction 

o The Overview of smart IoT networks and their significance and the increasing 
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threat of cyber attacks in IoT networks.Its Purpose To explore the role of 

machine learning in detecting and preventing cyber attacks in IoT environments. 

➢ IoT Security Landscape 

o Common cyber attacks targeting IoT devices (e.g., DDoS, ransomware, data 

breaches).It Specifies vulnerabilities in IoT devices and networks.Potential 

impact of these cyber attacks on organizations and individuals 

➢ Machine Learning in Cybersecurity 

o Basic concepts and types of machine learning (supervised, unsupervised, 

reinforcement learning).General applications of machine learning in detecting 

and mitigating cyber threats. 

➢ Integration of Machine Learning in IoT Security Techniques and Algorithms: 

o Supervised Learning Examples include anomaly detection using decision trees, 

and neural networks. 

o Unsupervised Learning: Techniques like clustering and anomaly detection using 

Auto Encoder. 

➢ Data Collection and Preprocessing 

o Importance of data quality, feature selection, and data labeling in training 

machine learning models. 

➢ Challenges and Limitations 

o The Issues related to data quality, model accuracy, and real-time 

processing.Integration with existing systems, scalability, and cost. Ensuring user 

privacy and ethical use of data. 

➢ Future Enhancement 

o Advances in machine learning algorithms and their potential applications in IoT 

security.Areas for further research to improve the effectiveness of machine 

learning in IoT cybersecurity.The role of regulatory frameworks in promoting 

secure IoT environments. 

➢ Conclusion 

o Recap of key points discussed in the report.The importance of continuous 

innovation and vigilance in IoT security. 

➢ References 

o Cite of sources, studies, and articles referenced throughout the report. 

o By following this outline, you can create a comprehensive organizational report 

that addresses the critical aspects of using machine learning to identify and 
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mitigate cyber attacks in smart IoT networks. Ensure that each section is well-

researched and supported by current data and examples to provide a thorough 

understanding of the subject. 
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CHAPTER-02 

LITERATURE SURVEY 

1. Jonatan Gomez and Dipankar Dasgupta. Evolving fuzzy classifiers for intrusion 

detection. In Proceedings of the 2002 IEEE Workshop on Information Assurance, 

West Point, NY, USA, 2002. 

Authors: Jonatan Gomez and Dipankar Dasgupta 

 

Description 

This citation refers to a publication by Jonatan Gomez and Dipankar Dasgupta titled 

"Evolving fuzzy classifiers for intrusion detection." It was presented at the 2002 IEEE 

Workshop on Information Assurance held in West Point, New York, USA. 

The paper discusses a novel approach to intrusion detection using fuzzy 

classifiers. Fuzzy classifiers incorporate the concept of fuzzy logic, which deals with 

reasoning that is approximate rather than fixed and exact. The authors explore how 

evolving these classifiers can enhance the adaptability and accuracy of intrusion detection 

systems. 

In their work, Gomez and Dasgupta address a crucial challenge in cybersecurity: 

the dynamic and evolving nature of network intrusions. The paper provides a detailed 

methodology for training and evolving fuzzy classifiers using machine learning 

techniques, allowing the system to recognize new types of attacks while adapting to 

changes in attack patterns. 

The research includes a comprehensive evaluation of the classifier's performance, 

demonstrating its efficacy in detecting known and emerging intrusions with a high degree 

of accuracy. The results presented in this paper highlight the potential of evolving fuzzy 

classifiers to improve intrusion detection mechanisms significantly. 

2. Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection 

using sequences of system calls. Journal of Computer Security, 6(3):151{180, August 

1998. 

Authors: Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. 

 

Description 

 

This citation is for a paper by Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji, 

titled "Intrusion Detection Using Sequences of System Calls," published in the Journal of 
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Computer Security, volume 6, issue 3, pages 151-180, in August 1998. 

The paper presents a pioneering method for detecting intrusions by monitoring 

sequences of system calls. The authors argue that sequences of system calls are indicative 

of a program's normal behavior, and deviations from these sequences can reveal malicious 

activities. 

Their approach involves building profiles of normal system behavior by capturing 

and analyzing the sequences of system calls made by various programs. Once these 

profiles are created, the system can compare real-time sequences against the normal 

patterns, identifying deviations as potential security threats. By focusing on sequences 

instead of individual calls, the approach captures contextual behavior, leading to more 

accurate intrusion detection. 

The authors describe their methodology in detail, including the design of the 

detection system, data collection, and analysis process. They also provide experimental 

results that demonstrate the effectiveness of their system in detecting various types of 

intrusions with minimal false positives. The paper is foundational in establishing the 

importance of system call sequences in security monitoring and laid groundwork for 

future research in behaviour-based intrusion detection systems 

3. Peter Mell Karen Scarfone. Guide to intrusion detection and prevention systems 

(idps). National Institute of Standards and Technology, NIST SP - 800-94, 2007. 

Authors: Peter Mell Karen Scarfone 

 

Description 

Intrusion Detection and Prevention Systems (IDPS)." Published by the National Institute 

of Standards and Technology (NIST) as Special Publication 800-94 in 2007, this 

document serves as a comprehensive guide to understanding and implementing intrusion 

detection and prevention systems.The guide begins by providing an overview of intrusion 

detection and prevention systems, describing how they monitor network and system 

activities for malicious behaviors. It outlines the fundamental differences between 

intrusion detection systems (IDS) and intrusion prevention systems (IPS), highlighting 

their respective capabilities. 

Mell and Scarfone detail the various types of IDPS technologies, including: 

1. Network-Based Systems: These monitor network traffic for suspicious activity. 

2. Host-Based Systems: These operate on individual hosts to analyze system calls, 

file system changes, and other internal behaviors. 

3. Wireless Systems: These detect suspicious activities within wireless networks. 

4. Network Behavior Analysis Systems: These identify unusual traffic patterns in 
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network flows that could indicate intrusions. 

4. Jungwon Kim, Peter J. Bentley, Uwe Aickelin , Julie Greensmith, Gianni Tedesco, 

and Jamie Twycross. Immune system approaches to intrusion detection { a review. 

Natural Computing, 6(4):413{466, December 2007. 

Authors: Jungwon Kim, Peter J. Bentley, Uwe Aickelin , Julie Greensmith, Gianni 

Tedesco. 

Description 

 

This citation refers to a paper by Jungwon Kim, Peter J. Bentley, Uwe Aickelin, Julie 

Greensmith, Gianni Tedesco, and Jamie Twycross, titled "Immune System Approaches 

toIntrusion Detection: A Review," published in the journal Natural Computing, volume 6, 

issue 4, pages 413-466, in December 2007. 

The paper presents a comprehensive review of intrusion detection techniques inspired by 

the human immune system. These techniques, collectively known as artificial immune 

systems (AIS), are part of the broader field of biologically inspired computing. 

The authors describe the analogy between biological immune systems and computer 

security systems. Just as the immune system protects the body against harmful pathogens, 

an intrusion detection system (IDS) aims to protect networks and computers from 

malicious attacks. AIS-based intrusion detection systems use principles like pattern 

recognition, anomaly detection, and learning to identify security threats. 

Key areas covered in this review include: 

1. Immune System Models: A summary of the components and processes of the 

human immune system that are relevant to IDS, such as the concept of self/non- 

self discrimination, immunological memory, and the use of antibodies. 

2. Applications in Intrusion Detection: An exploration of how different immune 

system concepts have been adapted to detect malicious activities in computer 

networks, including negative selection, clonal selection, and danger theory. 

3. Challenges and Future Directions: A discussion of the challenges facing immune- 

based intrusion detection, such as scalability, adaptability, and reducing false 

positives. The paper also suggests future research areas to improve AIS-based 

systems' effectiveness. 

5. A. Shabtai, E. Menahem and Y. Elovici. FSign: automatic, function-based 

signature generation for malware, systems, man, and cybernetics, Part C: 

applications and reviews. Transactions on IEEE, 41, 494–508, 2011. 

Authors: A. Shabtai, E. Menahem and Y. Elovici. 
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Description 

This citation refers to a paper authored by A. Shabtai, E. Menahem, and Y. Elovici, titled 

"FSign: Automatic, Function-Based Signature Generation for Malware." It was published 

in the IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and 

Reviews, volume 41, on pages 494-508, in 2011. 

The paper presents FSign, a novel system for automatically generating malware 

signatures based on the functions utilized by malicious software. The authors aimed to 

improve the speed and accuracy of malware detection by focusing on specific functions 

that characterize malware behaviors. 

Key features and contributions include: 

1. Function-Based Analysis: The authors emphasize the importance of identifying 

functions that are consistently used in malware programs. By understanding these 

functions' behavior, F Sign can recognize patterns indicative of malware. 

2. Automatic Signature Generation: F Sign employs an automatic signature 

generation process to identify relevant functions within unknown samples, 

enabling it to produce effective signatures quickly and efficiently. 

3. Evaluation and Testing: The paper provides comprehensive evaluations 

demonstrating that F Sign can detect a wide range of malware variants. The 

system's function-based approach offers more robust protection against 

obfuscation techniques used by modern malware authors. 
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CHAPTER-03 

Methodology 
3.1 System Architetcture: 

 
 

 

 
Figure 3.1 System Architecture 

  

3.1.1 Source: 

 Source will provide the information to the user. 

 

3.1.2 Upload Cyber Dataset 

The Purpose is to uploads the Cyber dataset into the application. The main Functionality 

allows the user to select the dataset file and imports it into the system for further 

processing. It will Loads the dataset and provides an initial visualization showing the 

count of different attack types. Alerts the user to potential data imbalance. 

3.1.3 Pre-process Dataset 

The purpose of pre-process dataset is to cleanses and normalizes the dataset. The main 

functionality is to replaces missing values with zero and applies a Min-Max scaling 

algorithm to normalize the feature values. Splits the dataset into training and testing 

subsets, using 80% of the data for training and 20% for testing.It will returns the pre- 

processed dataset ready for model training. 

3.1.4 Run Auto Encoder Algorithm 

It works on to trains an auto encoder deep learning algorithm on the dataset.The main 

Function is to extracts features from the Auto Encoder model after training.It Provides 

the accuracy of the model and the learned feature representations. 
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3.1.5 Run Decision Tree with PCA 

It Applies dimensionality reduction and classification using PCA and Decision Tree 

algorithms. It works to transforms the features extracted from the Auto Encoder using 

PCA to reduce dimensionality. Trains a Decision Tree classifier on the transformed 

features and predicts labels based on dataset signatures.It displays improved classification 

accuracy after dimensionality reduction. 

3.1.6 Run DNN Algorithm 

The purpose is to further enhances classification using a Deep Neural Network (DNN).It 

works to trains a DNN on the predicted labels from the Decision Tree classifier to detect 

and classify attacks.It Displays the enhanced accuracy and precision obtained with the 

DNN. 

3.1.7 Detection & Attribute Attack Type 

The purpose of this is to identifies and attributes attack types for unlabelled data.It works 

to uploads a new test dataset containing only signature data. Uses the trained DNN model 

to predict the attack type for each test data entry.Outputs the predicted attack types for 

each entry. 

3.1.8 Comparison Graph 

It purpose is to visualizes a comparison between different algorithms.It will plots a graph 

to compare precision, recall, accuracy, and F1 Score between Auto Encoder, Decision 

Tree with PCA, and DNN.It displays a bar graph comparing the performance of each 

algorithm. 

3.1.9 Comparison Table 

It will tabulates the performance metrics for each algorithm.It’s functionality Generates a 

table that compares algorithms across various metrics such as accuracy, precision, recall, 

and F1 Score. It Displays a detailed comparison table with metric values for each 

algorithm. 
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3.2 Algorithms 

 3.2.1 Auto Encoder 

Autoencoders are a type of neural network commonly used for unsupervised learning 

tasks, particularly in dimensionality reduction and data compression. In the context of 

anomaly detection, an autoencoder can learn to reconstruct normal patterns and identify 

deviations as potential cyber attacks.The autoencoder can reconstruct normal instances 

with low error rates. When presented with anomalous data (such as data generated by 

cyber attacks), the reconstruction error is typically higher. Therefore, instances with high 

reconstruction error are flagged as potential anomalies or cyber attacks. 

3.2.2 Decision tree 

Decision trees are another powerful machine learning technique commonly used in 

identifying cyber attacks. A decision tree model is trained using the labeled dataset, 

where each data point is labeled as either a normal or an attack instance. The decision 

tree algorithm recursively splits the data based on the features to create a tree-like 

structure. Decision trees are simple and interpretable models that partition the feature 

space based on attribute values. They are effective for detecting certain types of cyber 

attacks by recursively splitting the data into subsets. 

3.2.3 DNN 

A deep neural network (DNN) is an ANN with multiple hidden layers between the input 

and output layers. Similar to shallow ANNs, DNNs can model complex non-linear 

relationships. DNNs can be trained to recognize patterns of normal behavior within IoT 

networks. Deviations from these patterns can indicate potential cyber attacks. DNNs 

excel at anomaly detection tasks by learning to distinguish between normal and abnormal 

network behavior. Deep Neural Networks (DNNs) are increasingly being utilized in 

identifying cyber attacks within smart IoT networks due to their powerful ability to model 

complex patterns and detect subtle anomalies in large datasets. DNNs consist of multiple 

layers of neurons, including input layers, hidden layers, and output layers. Each layer 

transforms in IoT networks, this includes network traffic data, device logs, and sensor 

readings. Data preprocessing steps like normalization, noise reduction, and segmentation 

are critical to prepare the data for model training. By analyzing traffic patterns and 

identifying abnormal spikes, DNNs can predict and flag potential DoS attacks. DNN 

algorithms in identifying cyber-attacks in smart IoT networks leverages their capability 
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to learn and recognize intricate patterns from vast amounts of data, providing a robust 

mechanism for real-time threat detection and mitigation. 
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CHAPTER-04 

System Requirement Specification 

The software requirements specify the use of all required software products like 

data management system. The required software product specifies the numbers and 

version. Each interface specifies the purpose of the interfacing software as related to this 

software product. 

4.1 Functional Requirements 

The functional requirement refers to the system needs in an exceedingly computer code 

engineering method.The key goal of determinant “functional requirements” in an 

exceedingly product style and implementation is to capture the desired behavior of a 

software package in terms of practicality and also the technology implementation of the 

business processes. 

4.2 Performance Requirements 

Performance is measured in terms of the output provided by the application. Requirement 

specification plays an important part in the analysis of a system. Only when the 

requirement specifications are properly given, it is possible to design a system, which will 

fit into required environment. It rests largely with the users of the existing system to give 

the requirement specifications because they are the people who finally use the system. 

This is because the requirements have to be known during the initial stages so that the 

system can be designed according to those requirements. It is very difficult to change the 

system once it has been designed and on the other hand designing a system, which does 

not cater to the requirements of the user, is of no use. 

The requirement specification for any system can be broadly stated as given below: 

The system should be able to interface with the existing system. 

The system should be accurate. 

The system should be better than the existing system. 

4.3 Software Requriements 

The software requirements specify the use of all required software products like data 

management system. The required software product specifies the numbers and version. 

Each interface specifies the purpose of the interfacing software as related to this software 

product. 

 Operating system    : Windows XP/7/10 
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 Coding Language   : Python 3.7 

4.4 Hardware Requirements 

The hardware requirement specifies each interface of the software elements and 

the hardware elements of the system. These hardware requirements include 

configuration characteristics. 

➢ System : Pentium IV 2.4 GHz. 

➢ Hard Disk   : 75 GB. 

➢ Monitor : 15 VGA Color. 

➢ Mouse : Logitech. 

➢ RAM : 1 GB 

 

 4.5 Technology used 

Identifying cyber attacks using machine learning in IOT networks,several technologies 

are commonly employed. 

Here are some technologies used in this context: 

4.5.1 Machine Learning 

Various machine learning algorithms are applied for cyber attack detection including 

supervised algorithm such as decision tree. Learning technology such as deep neural 

network(DNNs) and auto encoders. Supervised learning algorithms may classify data into 

normal and malicious categories.Tools for preprocessing and analyzing IoT data play a 

crucial role. 

These may include Python libraries such as Pandas, NumPy, and Scikit-learn for 

data manipulation, feature extraction, and model training. Additionally, specialized tools 

or platforms designed for handling large-scale IoT data, such as TensorFlow, may be 

utilized. 

1. NUMPY 

NumPy arrays are used to store and manipulate data, especially in the context of 

machine learning algorithms. For example, the dataset and its features are stored in 

NumPy arrays (X and Y) after preprocessing. NumPy provides mathematical functions 

for array computations. In this script, np.random.shuffle() is used to shuffle the dataset, 

and mathematical operations are performed for calculating accuracy, precision, recall, 

and F1-score metrics.NumPy arrays are involved in data normalization processes. For 

instance, MinMaxScaler from scikit-learn is used to scale features between a specified 

range, and NumPy arrays are used to store the normalized data. 
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2. Pandas 

Pandas is used to read the dataset from CSV files into Data Frame objects. The 

dataset is then manipulated using various Data Frame operations such as filling missing 

values (fill na()), extracting values, and shuffling rows. Pandas is used to read the 

dataset from CSV files into Data Frame objects. The dataset is then manipulated using 

various Data Frame operations such as filling missing values (fill na()), extracting 

values, and shuffling rows. The pandas library to load a dataset from a CSV file. The 

dataset is displayed using dataset.head().Created a bar chart to visualize the various 

cyber-attacks found in the dataset. 

3. MATAPLOTLIB 

Matplotlib is used for data visualization. It is used to plot graphs showing the distribution 

of different types of cyber- attacks in the dataset. Plotting bar graphs to visualize the 

distribution of cyber-attacks plotting performance comparison graphs. 

6. SCIKIT-LEARN 

This library is used for machine learning tasks like preprocessing, model selection, 

evaluation, and many more. You've used sk-learn for tasks such as Data preprocessing: 

train_test_-plit, Min-Max-Scaler Model evaluation: accuracy-score, precision-score, 

recall-score, f1_scoreModel training: Decision Tree Classifier, MLP Classifier. 

7. KERAS 

It's a high-level neural networks API, written in Python and capable of running on top of 

TensorFlow, CNTK, or Theano. In your code, you've used Keras for. Building and 

training an autoencoder neural network.Saving and loading models (model_from_json, 

load_weights, save_weights). 

8. Tkinker 

A graphical user interface (GUI) application using Tkinker in Python for 

identifying cyber attacks in smart IoT networks. Import necessary libraries for GUI 

development, data manipulation, machine learning, and visualization. Create the main 

window of your application using Tkinker and set its title, geometry, and size functions 

for uploading datasets, preprocessing data, running machine learning algorithms (Auto 

Encoder, Decision Tree with PCA, DNN), detecting cyber attacks, and generating 

comparison graphs and tables. Each function performs specific tasks such as loading data, 

preprocessing, training machine learning models, and evaluating performance metrics. 

GUI components like buttons, labels, and text areas using Tkinker to provide user 

interaction and display information. 

Users can upload datasets, preprocess data, run different machine learning 

algorithms, detect cyber attacks, and visualize performance results through the GUI. 
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integrate machine learning algorithms such as Auto Encoder, Decision Tree with PCA, 

and DNN into your application for cyber attack detection. The application preprocesses 

data, trains machine learning models, evaluates performance metrics, and provides 

visualizations to users. Users interact with the application through buttons and text areas 

to perform tasks such as uploading datasets, running algorithms, and viewing results. 

Application provides a user-friendly interface for identifying cyber attacks in smart IoT 

networks using machine learning techniques, allowing users to upload datasets, 

preprocess data, train models, detect attacks, and analyze performance metrics The main 

GUI window is created using tkinker Tk().The window title is set to “Identification of 

Cyber Attack in Network using Machine Learning Techniques”. The window 

dimensions are set to 1300x1200 pixels. 

IoT networks and Protocol 

Understanding IoT information i.e Bot-IoT Utilizing a bot for identifying cyber attacks in 

smart IoT networks involves creating an intelligent software agent that can autonomously 

monitor network traffic, analyze data from IoT devices, and detect suspicious activities 

indicative of cyberattacks. The bot continuously collects data from IoT devices and 

network traffic, monitoring for anomalies and patterns that may indicate malicious 

activity. This data could include sensor readings, device logs, network packets, and 

communication protocols. 

The bot analyzes the preprocessed data to identify potential cyber threats. Based 

on the results of the analysis, the bot makes decisions regarding the presence of cyber 

attacks.If suspicious activity is detected, the bot generates alerts and notifies 

cybersecurity personnel or initiates automated response actions to mitigate the threat. 

By deploying a bot for IoT cybersecurity, organizations can enhance their ability to 

detect, respond to, and mitigate cyber threats in smart IoT networks, thereby 

strengthening overall cybersecurity defenses and safeguarding critical infrastructure and 

data. 
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CHAPTER-05 

SYSTEM DESIGN 

The purpose of the design phase is to arrange an answer of the matter such as by 

the necessity document. This part is that the opening moves in moving the matter 

domain to the answer domain. The design phase satisfies the requirements of the system. 

The design of a system is probably the foremost crucial issue warm heartedness the 

standard of the software package. It’s a serious impact on the later part, notably testing 

and maintenance. The output of this part is that the style of the document. This 

document is analogous to a blueprint of answer and is employed later throughout 

implementation, testing and maintenance. 

The design activity is commonly divided into 2 separate phases 

 

System Design 

System Design conjointly referred to as top-ranking style aims to spot the modules that 

ought to be within the system, the specifications of those modules, and the way them 

move with one another to supply the specified results. At the top of the system style all 

the main knowledge structures, file formats, output formats, and also the major modules 

within the system and their specifications square measure set. System design is that the 

method or art of process the design, components, modules, interfaces, and knowledge 

for a system to satisfy such as needs. Users will read it because the application of systems 

theory to development. 

Detailed Design. 

Detailed Design, the inner logic of every of the modules laid out in system design is 

determined. Throughout this part, the small print of the info of a module square measure 

sometimes laid out in a high-level style description language that is freelance of the target 

language within which the software package can eventually be enforced. In system 

design the main target is on distinguishing the modules, whereas throughout careful style 

the main target is on planning the logic for every of the modules. 

5.1 Introduction to Uml: 

The Unified Modeling Language allows the software engineer to express an analysis 

model using the modeling notation that is governed by a set of syntactic semantic and 

pragmatic rules. A UML system is represented using five different views that describe 

the system from distinctly different perspective. Each view is defined by a set of 

diagram, which is as follows. This view represents the system from the user’s 
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perspective. The analysis representation describes a usage scenario from the end-users 

perspective and data and functionality are arrived from inside the system. This model 

view models the static structures. 

5.2 UML diagrams 

UML diagrams plays a crucial role in understanding, designing, and communicating the 

system architecture and functionality of cyber attack identification using machine 

learning in smart IoT networks. Depending on the specific requirements and complexity 

of the system, additional diagrams or variations of these diagrams may also be needed. 

UML diagrams can be adapted to model various aspects of cyber- attacks, providing a 

visual representation of the attack vectors, strategies, and defense mechanisms. 

UML diagrams collectively provide a comprehensive visualization of the 

system's structure, interactions, and workflows, facilitating a clearer understanding of 

how the system identifies and responds to cyber attacks using machine learning in smart 

IoT networks. Creating a UML (Unified Modeling Language) diagram for a system that 

identifies cyber attacks using machine learning in smart IoT networks involves 

illustrating various components and their interactions. Below are descriptions of the key 

UML diagrams suitable for this system 

5.2.1 Use Case Diagrams 

Use-case diagrams graphically depict system behavior (use cases). These 

diagrams present a high -level view of how the system is used as viewed from an 

outsider’s (actor’s) perspective. A use-case diagram may depict all or some of the use 

cases of a system. 

A use-case diagram can contain: 

➢ actors ("things" outside the system) 

➢ use cases (system boundaries identifying what the system should do) 

➢ Interactions or relationships between actors and use cases in the system including the 

associations, dependencies, and generalizations. 

Relationships in use case 

1. Communication 

The communication relationship of an actor in a use-case is shown by connecting the 

actor symbol to the use-case symbol with a solid path. The actor is said to communicate 

with the use-case. 

2. Uses 

A Uses relationship between the use-cases is shown by generalization arrow from the use- 
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case. 

3. Extends 

The extend relationship is used when we have one use-case that is similar to another use- 

case but does a bit more. In essence it is like subclass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Use case Diagram Source 

This is the starting point of the process. 

Upload dataset The oval labeled “Upload dataset” suggests that data is being loaded into 

the system. 

Data Pre-process After uploading the dataset, there’s a step for data pre-processing. This 

likely involves cleaning, transforming, and preparing the data for further analysis. 

Train & Test The next step involves training and testing machine learning models. 

Three algorithms are shown in parallel 

Auto Encoder Algorithm 

Decision Tree Algorithm 

DNN Algorithm 

To identify the Accuracy ,Precision ,Recall and f1_Score 

Detection & attacks types These trained models are then used for detecting and 

classifying different types of attacks. This could be related to cybersecurity or anomaly 

detection. 

Result Finally, the process leads to a result, which might be the classification of attacks 
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or some other outcome. 

Destination The process ends here. 

Overall, this use case detecting and identifying attacks using machine learning 

techniques. 

5.2.1 Activity Diagram 

Activity Diagrams are used to illustrate the flow of control in a system and refer to the 

steps involved in the execution of a use case. It is a type of behavioral diagram and we 

can depict both sequential processing and concurrent processing of activities using an 

activity diagram an activity diagram focuses on the condition of flow and the sequence in 

which it happens. 

1. Initial State The starting state before an activity takes place is depicted using the 

initial state. 

2. Action or Activity State An activity represents execution of an action on objects or 

by objects. We represent an activity using a rectangle with rounded corners. Basically 

any action or event that takes place is represented using an activity. 

3. Action Flow or Control flows Action flows or Control flows are also referred to as 

paths and edges. They are used to show the transition from one activity state to another 

activity state. 

4. Decision node and Branching When we need to make a decision before deciding 

the flow of control, we use the decision node. The outgoing arrows from the decision 

node can be labelled with conditions or guard expressions. It always includes two or 

more output arrows. 

5. Fork Fork nodes are used to support concurrent activities. When we use a fork node 

when both the activities get executed concurrently i.e. no decision is made before 

splitting the activity into two parts. Both parts need to be executed in case of a fork 

statement. We use a rounded solid rectangular bar to represent a Fork notation with 

incoming arrow from the parent activity state and outgoing arrows towards the newly 

created activities. 

6. Join Join nodes are used to support concurrent activities converging into one. For 

join notations we have two or more incoming edges and one outgoing edge. 
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Figure 5.2 Activity Diagram 

Data Set This is the starting point. 

Select a dataset for your machine learning task. 

Key actions include: 

Select dataset():Choosing the appropriate dataset. 

Import dataset(): Loading the data into your environment. 

View dataset(): Exploring the dataset to understand its structure. 

Data Preprocessing In this step, you clean and prepare the data for modeling. 

Essential operations: 

Missing data removal(): Handling missing values. 

Encoding Categorical(): Converting categorical variables into numerical representations. 

Feature Extraction 

Extracting relevant features from the data. 

Important steps: 

Dataset Split Train and Test(): Dividing the dataset into training and testing subsets. 

Feature Extraction(): Identifying relevant features for modeling. 

Classification 

Finally, you build a model and classify data. 

Functions involved: 

detection(): Detecting patterns or anomalies. 
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prediction(): Making predictions based on the model. 

5.2.2 Sequence Diagram 

A sequence diagram is a graphical view of a scenario that shows object interaction 

in a time-based sequence what happens first, what happens next. Sequence diagrams 

establish the roles of objects and help provide essential information to determine class 

responsibilities and interfaces. 

A sequence diagram has two dimensions: typically, vertical placement represents 

time and horizontal placement represents different objects. 

1. Actors 

An actor in a UML diagram represents a type of role where it interacts with the system 

and its objects. It is important to note here that an actor is always outside the scope of the 

system we aim to model using the UML diagram. 

2. Lifeline 

A lifeline is a named element which depicts an individual participant in a sequence 

diagram. So basically each instance in a sequence diagram is represented by a lifeline. 

Lifeline elements are located at the top in a sequence diagram. 

The flow of data and interactions between components in a system designed to identify 

cyber attacks using machine learning in smart IoT networks. Each step ensures that the 

raw data from IoT devices is processed, analyzed, and acted upon efficiently to maintain 

network security. 

Creating a sequence diagram for identifying cyber attacks using machine learning 

in smart IoT networks involves detailing the interactions between various components in 

the system. 

Source 

The process begins with 

Upload dataset: This step involves providing the machine learning system with a dataset 

containing relevant information. 

System: The data goes through two steps: 

 

Clean and normalize 

Here, the dataset is pre processed to remove noise, handle missing values, and ensure 

consistency. 

Preprocessed data: The cleaned data is ready for further analysis. 
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Figure 5.3 Sequence Diagram 

 

ML Algorithm 

The flowchart branches into two ML algorithms 

 

Auto Encoder algorithm: Applied to the pre processed data.The accuracy of the Auto 

Encoder is evaluated . 

Decision Tree algorithm: Decision trees are used for classification or regression tasks. The 

accuracy of the Decision Tree algorithm is assessed. 

DNN algorithm: Deep Neural Networks (DNNs) are employed for more complex tasks. 

The accuracy of the DNN is also evaluated. 

Detection & Attack Types 

The final step is where the accuracy of the DNN model in detecting specific types of 

attacks is measured. 

Destination 

The process concludes with two steps: 

Types of attacks This likely refers to identifying different attack categories. 

Result: The overall outcome or findings based on the ML models and their accuracy. 

This Sequence diagram outlines a systematic approach to using ML algorithms for 

detecting various cyber-attacks or anomalies in data. 

5.2.4.Class Diagram 

A class diagram in the Unified Modeling Language (UML) is a type of static structure 

diagram that describes the structure of a system by showing the system's classes, their 
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attributes, operations (or methods), and the relationships among the classes. It explains 

which class contains information. 

 

 

Figure 5.4 Class Diagram 

Upload Cyber Attack Dataset 

The process begins by uploading a dataset related to IOT releated . This dataset likely 

contains information about various incidents, their attributes, and outcomes. 

Data Validation 

The flowchart splits into two paths based on whether the dataset is valid or not. 

 

If the dataset is valid, it proceeds to the next steps.If invalid, there might be missing 

values, inconsistencies, or other issues that need to be addressed. 

Provide Initial Visualization 

After validation, the dataset is visualized to gain insights.This step helps identify patterns, 

outliers, and potential areas of interest. 

Alert on Data Imbalance 

Imbalanced datasets (where some classes have significantly more samples than others) 

can affect model performance.An alert is raised if the dataset suffers from class 

imbalance. 

Pre-process Dataset 

Data preprocessing involves cleaning, transforming, and preparing the dataset for model 

training.Common steps include handling missing values, scaling features, and encoding 

categorical variables. 

Model Training 

The flowchart shows two models being trained: 

Auto Encoder Model: An unsupervised neural network used for feature extraction and 
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anomaly detection. 

Decision Tree with PCA: A supervised model that uses Principal Component Analysis 

(PCA) for dimensionality reduction. 

Both models learn from the pre-processed data. 

 

Comparison Graph and Table 

 

The results from both models are compared.A graph (possibly showing performance 

metrics) and a table (listing relevant statistics) are generated. 

Detection & Attribute Attack Type 

 

Finally, the flowchart concludes by detecting and attributing the type of cyber attack 

based on the trained models’ predictions. 
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from tkinter 
import * 
from tkinter import 
simpledialog 
import 
tkinter 
from tkinter import 
filedialog 
from tkinter.filedialog import 
askopenfilename 
import numpy as 
np 
import matplotlib.pyplot 
as plt 
import pandas as 
pd 
from sklearn.metrics import 
accuracy_score 
from sklearn.model_selection import 
train_test_split 
import 
os 
from sklearn.metrics import 
precision_score 
from sklearn.metrics import 
recall_score 
from sklearn.metrics import 
f1_score 
import 
webbrowser 
import 
pickle 
from sklearn.decomposition 
import PCA 
from sklearn.tree import 
DecisionTreeClassifier 
from sklearn.preprocessing import 
MinMaxScaler 
import 
keras 
from keras import 
layers 
from keras.models import 
model_from_json 
from keras.utils.np_utils import 
to_categorical 
from keras.models import 
Model 
from sklearn.neural_network import 
MLPClassifier 

 

 

 

 

 
6.1 Source Code 

CHAPTER-06 

              Implementation 

 

 

 

 

from tkinter import 
messagebox 
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global 
X,Y 
global 
dataset 
global accuracy, precision, recall, fscore, 
vector 
global X_train, X_test, y_train, y_test, 
scaler 

'Response Injection (CMRI)', 'Malicious State Command Injection (MSCI)', 

labels = ['Normal', 'Naive Malicious Response Injection (NMRI)', 'Complex Malicious', 

Injection (MFCI)', 'Denial of Service (DoS)'] 

'Malicious Parameter Command Injection (MPCI)', 'Malicious Function Code 

main = 
tkinter.Tk() 

Techniques") #designing main screen 

main.title("Identification of Cyber Attack in Network using Machine Learning 

main.geometry("1300x12
00") 
#fucntion to upload 
dataset 
def 
uploadDataset(): 

global filename, 
dataset 
text.delete('1.0', 
END) 
filename = filedialog.askopenfilename(initialdir="Dataset") #upload 
dataset file 
text.insert(END,filename+" 
loaded\n\n") 
dataset = pd.read_csv(filename) #read dataset from 
uploaded file 
text.insert(END,"Dataset 
Values\n\n") 
text.insert(END,str(dataset.hea
d())) 
text.update_idletas
ks() 
unique, count = np.unique(dataset['result'], 
return_counts=True) 
height = 
count 
bars = 
labels 
print(heig
ht) 
print(bar
s) 
y_pos = 
np.arange(len(bars)) 
plt.bar(y_pos, 
height) 
plt.xticks(y_pos, 
bars) 

 

 

 

 

 

 

 

global filename, autoencoder, decision_tree, dnn, 
encoder_model, pca 

plt.xticks(rotation=
90) 
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plt.title("Various Cyber-Attacks Found in Dataset") #plot graph with 
various attacks 
plt.show
() 

def 
preprocessing(): 

text.delete('1.0', 
END) 
global dataset, 
scaler 
global X_train, X_test, y_train, 
y_test, X, Y 
#replace missing values 
with 0 
dataset.fillna(0, inplace = 
True) 
scaler = MinMaxScaler() #min max scaling for datset 
normalization 
with open('model/minmax.txt', 'rb') 
as file: 

scaler = 
pickle.load(file) 

file.close
() 
dataset = 
dataset.values 
X = 
dataset[:,0:dataset.shape[1]-1] 
Y = 
dataset[:,dataset.shape[1]-1] 
indices = 
np.arange(X.shape[0]) 
np.random.shuffle(indices) #shuffle 
dataset 
X = 
X[indices] 
Y = 
Y[indices] 
Y = 
to_categorical(Y) 
X = 
scaler.transform(X) 
text.insert(END,"Dataset after features 
normalization\n\n") 
text.insert(END,str(X)+"\n
\n") 
text.insert(END,"Total records found in dataset : 
"+str(X.shape[0])+"\n") 
text.insert(END,"Total features found in dataset: 
"+str(X.shape[1])+"\n\n") 
X_train, X_test, y_train, y_test = train_test_split(X, Y, 
test_size=0.2) 
text.insert(END,"Dataset Train and Test 
Split\n\n") 

"+str(X_train.shape[0])+"\n") 

text.insert(END,"80% dataset records used to train ML algorithms : 
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def calculateMetrics(algorithm, predict, 
y_test): 

a = 
accuracy_score(y_test,predict)*1
00 p = precision_score(y_test, 
predict,average='macro') * 100 
r = recall_score(y_test, 
predict,average='macro') * 100 
f = f1_score(y_test, 
predict,average='macro') * 100 
accuracy.append
(a) 
precision.append
(p) 
recall.append
(r) 
fscore.append
(f) 
text.insert(END,algorithm+" Accuracy : 
"+str(a)+"\n") 
text.insert(END,algorithm+" Precision : 
"+str(p)+"\n") 
text.insert(END,algorithm+" Recall : 
"+str(r)+"\n") 
text.insert(END,algorithm+" FScore : 
"+str(f)+"\n\n") 

def 
runAutoEncoder(): 

text.delete('1.0', 
END) 
global X_train, X_test, y_train, 
y_test, X, Y 
global 
autoencoder 
global accuracy, precision, recall, 
fscore 
accuracy = 
[] 
precision = 
[] 
recall = 
[] 
fscore = 
[] 
if 
os.path.exists("model/encoder_model.js
on"): with open('model/encoder_model.json', "r") as 

json_file: 
loaded_model_json = 
json_file.read() 
autoencoder = 
model_from_json(loaded_model_json) 

json_file.clos
e() 
autoencoder.load_weights("model/encoder_model_wei
ghts.h5") 

 

 

 

 
 

 

 

 

"+str(X_test.shape[0])+"\n") 

text.insert(END,"20% dataset records used to train ML algorithms : 
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else
: 

filtered 32 times to get important features from dataset 

encoding_dim = 256 # encoding dimesnion is 32 which means each row will be 

input_size = keras.Input(shape=(X.shape[1],)) #we are taking 
input size 

dense layer to start filtering dataset with given 32 filter dimension 

encoded = layers.Dense(encoding_dim, activation='relu')(input_size) #creating 

another layer with input size as 784 for encoding 

decoded = layers.Dense(y_train.shape[1], activation='softmax')(encoded) #creating 

prediction result 

autoencoder = keras.Model(input_size, decoded) #creating decoded layer to get 

and input images 

encoder = keras.Model(input_size, encoded)#creating encoder object with encoded 

same input dimension 

encoded_input = keras.Input(shape=(encoding_dim,))#creating another layer for 

decoder_layer = autoencoder.layers[-1] #holding 
last layer 

last layer with encoded input layer 

decoder = keras.Model(encoded_input, decoder_layer(encoded_input))#merging 

metrics=['accuracy'])#compiling model 

loss='categorical_crossentropy', autoencoder.compile(optimizer='adam', 

validation_data=(X_test, y_test))#now start generating model with given Xtrain as input 

hist = autoencoder.fit(X_train, y_train, epochs=300, batch_size=16, shuffle=True, 

creating model will take 100 iterations 

autoencoder.save_weights('model/encoder_model_weights.h5')#above line for 

model_json = autoencoder.to_json() 
#saving model 
with open("model/encoder_model.json", "w") as 
json_file: 

json_file.write(model_j
son) 

json_file.clo
se 

print(autoencoder.summary())#printing model 
summary 
predict = 
autoencoder.predict(X_test) 
predict = np.argmax(predict, 
axis=1) 
testY = np.argmax(y_test, 
axis=1) 
calculateMetrics("AutoEncoder", predict, 
testY) 

def 
runDecisionTree(): 

 

 

 

 

 

 

autoencoder._make_predict_func
tion() 
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global X_train, X_test, y_train, y_test, X, 
Y, pca 

autoencoder model 

encoder_model = Model(autoencoder.inputs, autoencoder.layers[-1].output)#creating 

vector = encoder_model.predict(X) #extracting features using 
autoencoder 
pca = PCA(n_components = 7) #applying PCA for features 
reduction 
vector = 
pca.fit_transform(vector) 
Y1 = np.argmax(Y, 
axis=1) 
X_train, X_test, y_train, y_test = train_test_split(vector, Y1, 
test_size=0.2) 
decision_tree = DecisionTreeClassifier() #defining 
decision tree 
decision_tree.fit(vector, Y1) #training with 
decision tree 
predict = 
decision_tree.predict(X_test) 

AutoEncoder\n") 

text.insert(END,"Decision Tree Trained on New Features Extracted from 

calculateMetrics("Decision Tree", predict, 
y_test) 

def 
runDNN(): 

global autoencoder, decision_tree, encoder_model, 
dnn, vector 
global X_train, X_test, y_train, 
y_test, X, Y 
attack_type = 
[] 
for i in 
range(len(vector)): 

temp = 
[] 
temp.append(vector
[i]) 

predicting attack type 

attack = decision_tree.predict(np.asarray(temp)) #using decision tree we are 

attack_type.append(attac
k[0]) 

attack_type = 
np.asarray(attack_type) 
X_train, X_test, y_train, y_test = train_test_split(vector, attack_type, 
test_size=0.2) 
dnn = MLPClassifier() #defining DNN 
algorithm 
dnn.fit(vector, attack_type) #train DNN with various 
attack type 
predict = dnn.predict(X_test) #predict label forr 
unknown attack 
text.insert(END,"Attack Prediction using 
DNN\n") 

 

 

 

 

 

 

 

global autoencoder, decision_tree, 
encoder_model, vector 
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def 
attackAttributeDetection()
: text.delete('1.0', 

END) 
global autoencoder, decision_tree, encoder_model, 
dnn, pca 
filename = 
filedialog.askopenfilename(initialdir="Dataset") 
dataset = 
pd.read_csv(filename) 
dataset.fillna(0, inplace = 
True) 
values = 
dataset.values 
temp = 
dataset.values 
temp = 
scaler.transform(temp) 
test_vector = encoder_model.predict(temp) #extracting features using 
autoencoder 
test_vector = 
pca.transform(test_vector) 
print(test_vector.sha
pe) 
predict = 
dnn.predict(test_vector) 
for i in 
range(len(predict)): 

if predict[i] == 
0: 

ATTACK DETECTED\n\n") 

text.insert(END,"New Test Data : "+str(values[i])+" ====> NO CYBER 

else
: 

DETECTED Attribution Label : "+str(labels[predict[i]])+"\n\n") 

text.insert(END,"New Test Data : "+str(values[i])+" ====> CYBER ATTACK 

def 
graph(): 

Score',fscore[2]],['DNN','Accuracy',accuracy[2]], 

['DNN','Precision',precision[2]],['DNN','Recall',recall[2]],['DNN','F1 

],columns=['Algorithms','Performance 
Output','Value']) 

df.pivot("Algorithms", "Performance Output", 
"Value").plot(kind='bar') 

 

 

 

 

 

 

df = 

pd.DataFrame([['AutoEncoder','Precision',precision[0]],['AutoEncoder','Recall',recall[0] 

],['AutoEncoder','F1 Score',fscore[0]],['AutoEncoder','Accuracy',accuracy[0]],  

 

['Decision Tree with PCA','Precision',precision[1]],['Decision Tree with 

PCA','Recall',recall[1]],['Decision Tree with PCA','F1 Score',fscore[1]],['Decision Tree 

with PCA','Accuracy',accuracy[1]],  

 

 

calculateMetrics("DNN", predict, 
y_test) 
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def 
comparisonTable(): 

Name</th><th>Accuracy</th><th>Pr+ecision</th><th>Recall</th>" 

output = "<html><body><table align=center border=1><tr><th>Algorithm 

output+="<th>FSCORE</th>
</tr>" 

n[0])+"</td><td>"+str(recall[0])+"</td><td>"+str(fscore[0])+"</td></tr>" 

output+="<tr><td>AutoEncoder</td><td>"+str(accuracy[0])+"</td><td>"+str(precisio 

</td><td>"+str(recall[2])+"</td><td>"+str(fscore[2])+"</td></tr>" 

output+="<tr><td>DNN</td><td>"+str(accuracy[2])+"</td><td>"+str(precision[2])+" 

output+="</table></body></ht
ml>" 
f = open("table.html", 
"w") 
f.write(outp
ut) 
f.close
() 
webbrowser.open("table.html",ne
w=2) 

font = ('times', 16, 
'bold') 

Techniques') 

title = Label(main, text='Detection of Cyber Attack in Network using Machine Learning 

title.config(bg='greenyellow', 
fg='dodger blue') 
title.config(font=f
ont) 
title.config(height=3, 
width=120) 
title.place(x=0,y
=5) 
font1 = ('times', 12, 
'bold') 
text=Text(main,height=20,width
=150) 
scroll=Scrollbar(te
xt) 
text.configure(yscrollcommand=scro
ll.set) 
text.place(x=50,y=1
20) 
text.config(font=fo
nt1) 
font1 = ('times', 13, 
'bold') 

 

 

 

 

 

 

 

 

 

output+="<tr><td>Decision Tree with 

PCA</td><td>"+str(accuracy[1])+"</td><td>"+str(precision[1])+"</td><td>"+str(recal 

l[1])+"</td><td>"+str(fscore[1])+"</td></tr>"  

 

plt.show
() 
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uploadButton.place(x=50,y=
550) 
uploadButton.config(font=f
ont1) 
processButton = Button(main, text="Preprocess Dataset", 
command=preprocessing) 
processButton.place(x=330,y=
550) 
processButton.config(font=f
ont1) 

command=runAutoEncoder) 

Algorithm", AutoEncoder text="Run Button(main, = autoButton 

autoButton.place(x=630,y=
550) 
autoButton.config(font=fo
nt1) 

command=runDecisionTree) 

PCA", with Tree Decision text="Run Button(main, = dtButton 

dtButton.place(x=920,y=
550) 
dtButton.config(font=fo
nt1) 
dnnButton = Button(main, text="Run DNN Algorithm", 
command=runDNN) 
dnnButton.place(x=50,y=
600) 
dnnButton.config(font=fo
nt1) 

command=attackAttributeDetection) 

attributeButton = Button(main, text="Detection & Attribute Attack Type", 

attributeButton.place(x=330,y
=600) 
attributeButton.config(font=f
ont1) 
graphButton = Button(main, text="Comparison Graph", 
command=graph) 
graphButton.place(x=630,y=
600) 
graphButton.config(font=f
ont1) 
tableButton = Button(main, text="Comparison Table", 
command=comparisonTable) 
tableButton.place(x=920,y=
600) 
tableButton.config(font=fo
nt1) 
main.config(bg='LightSkyB
lue') 
main.mainloop
(). 

 

 

 

 

 

 

 

 

 

 

command=uploadDataset) 

uploadButton = Button(main, text="Upload SWAT Water Dataset", 
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Import Statements 

The code begins with several import statements. These are used 
toimport necessary 
modules and functions from Python libraries.For example, from tkinter 
import * imports 
all functions and classes from the tkinter library, which is commonly used 
for creating 
graphical user interfaces (GUIs).Other import statements include numpy, 
matplotlib, 
pandas, sklearn, keras, and 
more. 
Global Variables 

The code defines several global variables such as filename, autoencoder, 
decision_tree, 
dnn, encoder_model, pca, X, Y, dataset, accuracy, precision, recall, 
fscore, vector, 
X_train, X_test, y_train, y_test, and scaler.These variables are used 
throughout the code 
to store data, models, and other 
information. 
Tkinter GUI Setup 

The main GUI window is created using tkinter.Tk().The title of the 
window is set to 
“Identification of Cyber Attack in Network using Machine Learning 
Techniques”.The 
window dimensions are set to 1300x1200 
pixels. 
Function Definitions 

The code defines two 
functions: 
uploadDataset(): uploadDataset() allows the user to select a dataset file using 
a file dialog. 
The selected file is then read into a Pandas DataFrame (dataset).The 
function displays the 
loaded filename and the first few rows of the dataset.It also generates a bar 
chart showing 
the distribution of various cyber attacks found in 
the dataset. 
preprocessing(): It performs data preprocessing
 replaces missing values with 
0.Normalizes features using Min-Max scaling.Shuffles the dataset.Splits 
the dataset into 
training and testing sets.Converts labels to 
categorical format. 
Visualization 

The code includes a visualization step where it plots a bar chart showing 
the distribution 
of different cyber attacks in the 
dataset. 
Function Definition:The calculateMetrics function takes three 
arguments: algorithm, 
predict, and y_test.algorithm represents the name of the machine learning 
algorithm being 

 

 

 

 

 

 

 

Code Explanation 
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contains the true labels (ground truth) for the test 
dataset. 
Calculating Metrics:Inside the function, the following metrics are 
calculated: 
Accuracy: The percentage of correctly predicted instances out of the 
total instances. 
Precision: The ability of the model to correctly predict positive instances 
(true positives) 
relative to all predicted positive instances (true positives + false 
positives). 
Recall: The ability of the model to correctly predict positive instances 
(true positives) 
relative to all actual positive instances (true positives + false 
negatives). 
F1 Score: The harmonic mean of precision and recall, which balances both 
metrics.Each 
metric is multiplied by 100 to express it as a 
percentage. 
Appending Metrics to Lists:The calculated accuracy, precision, recall, and 
F1 score are 
appended to global lists (accuracy, precision, recall, and fscore).These 
lists likely store 
metrics for multiple algorithms or iterations.Updating the Text 
Widget:The function 
inserts the calculated metrics into a text widget (text) using the insert 
method.The format 
is: <algorithm> <Metric>: <Value> (e.g., “Decision Tree Accuracy: 
85.5”).The END 
argument ensures that the new text is added at the end of the 
existing content. 

6.2 Read CSV file 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The attacks found in dataset and dataset contains above labels as integer value of 

evaluated.predict contains the predicted labels (output) from the 
algorithm.y_test 
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The whole dataset is used in this phase. Seven different methods of 
machine learning 
were implemented on the entire dataset, and we used feature sets that were 
extracted for 
each attack 
separately. 

its index for example NORMAL label index will be 0 and continues up to 8 class labels. 

Below screen showing dataset details.first row contains dataset column names and 

remaining rows contains dataset values and in last column we have attack type from label 

0 to 7. We will used above dataset to train propose Auto Encoder, decision tree and DNN 

algorithms. It is significant to decrease thecount of features and just use the features 

needed totrain and test the algorithms to find a lightweight security solution appropriate 

for IoT systems. 

 

 

 

 

 

 

 

Figure 6.2.1 Csv 
train set 

Figure 6.2.2 CSV 
Test set 
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Figure6.3.1 
GUI 

 

 

 

6.3 Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

1)Upload SWAT Water Dataset: Using this module we will upload dataset 

to application and then read dataset and then find different attacks found in dataset 

 

Figure 6.5 Swat Dataset 

It reads the file and produces a visual document of the features extracted, and also 

offers a csv file of the dataset. This process was primarily designed to improve 

classifiers ’predictive capabilities by extracting new dataset features. 
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Figure 6.6 Upload swat dataset 

Preprocess Dataset: using this module we will replace all missing values with 0 and 

then apply MIN-MAX scaling algorithm to normalized features values . 

 

 

Figure 6.7: Preprocess the dataset  

 

During the machine learning process, data are needed so that learning can take place. In 

addition to the data required for training, test data are needed to evaluate the performance 

of the algorithm min order to see how well it works. we considered 80% of the Bot-IoT 

dataset to be the training data and the remaining 20% to be the testing data. 

Pre-processing data transformation operations are used to transform the dataset into a 

structure suitable for machine learning. This step also includes cleaning the dataset by 

2) 
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removing irrelevant or corrupted data that can affect the accuracy of the dataset, which 

makes it more efficient. 

Applying machine learning  algorithms on each attack in the dataset separately. 

When evaluating the performance of machine-learning models, it is crucial to define 

performance measures that are suitable for the task to be solved. In order to evaluate our 

results. 

3)Run Auto Encoder Algorithm: using this module we will tra ined Auto Encoder deep 

learning algorithm and then extract features from tat model. 

 

Figure 6.8 Auto Encoder 

 

4).Run Decision Tree with PCA: extracted features from Auto Encoder will get transform. 

 

Figure 6.9 Decision tree 
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5) Run DNN Algorithm: predicted decision tree label will further train with DNN 

(deepneural network) algorithm to detect and attribute attacks. 

 

Figure 6.10: DNN algorithm 

6) Detection & Attribute Attack Type: using this module we will upload unknown or un- 

label TEST DATA and then DNN will predict attack type. 

 

Figure 6.11 Test dataset 

Comparison Graph: Using this module we will plot comparison graph between all 

algorithms. 

 

Figure 6.12 Comparison Graph 

7) 
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8)Comparison Table: using this module we will display comparison table of all algorithms 

which contains metrics like accuracy, precision, recall and FSCORE. 

 

Figure 6.13Comparison Table 

Detected various attacks and now click on ‘Comparison Graph’ button to get below 

graph.graph x-axis represents algorithms names and y-axis represents different metric 

values such as precision, recall, accuracy and F_SCORE with different colour bars and in 

all algorithms DNN got high accuracy and now close above graph and then click on 

‘Comparison Table’ to get below comparison table of all algorithms. 
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CHAPTER-07 

Testing 

Testing is the process where the test data is prepared and is used for testing the 

modules individually and later the validation given for the fields. Then the system 

testing takes place which makes sure that all components of the system property 

functions as a unit. The test data should be chosen such that it passed through all 

possible condition. The following is the description of the testing strategies, which were 

carried out during the testing period. 

7.1 System testing 

Testing has become an integral part of any system or project especially in the field of 

information technology. The importance of testing is a method of justifying, if one is 

ready to move further, be it to be check if one is capable to with stand the rigors of a 

particular situation cannot be underplayed and that is why testing before development is 

so critical. When the software is developed before it is given to user to user the software 

must be tested whether it is solving the purpose for which it is developed. This testing 

involves various types through which one can ensure the software is reliable. The program 

was tested logically and pattern of execution of the program for a set of data are repeated. 

Thus the code was exhaustively checked for all possible correct data and the outcomes 

were also checked. 

7.2 Types of testings: 

 7.2.1 Module Testing: 

To locate errors, each module is tested individually. This enables us to detect error and 

correct it without affecting any other modules. Whenever the program is not satisfying 

the required function, it must be corrected to get the required result. Thus all the modules 

are individually tested from bottom up starting with the smallest and lowest modules and 

proceeding to the next level. Each module in the system is tested separately. For example 

the job classification module is tested separately. This module is tested with different job 

and its approximate execution time and the result of the test is compared with the results 

that are prepared manually. Each module in the system is tested separately. In this system 

the resource classification and job scheduling modules are tested separately. 

7.2.2 Intergration testing 
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After the module testing, the integration testing is applied. When linking the modules 

there may be chance for errors to occur, these errors are corrected by using this testing. 

In this system all modules are connected and tested. The testing results are very correct. 

Thus the mapping of jobs with resources is done correctly by the system. 

             7.2.3 Acceptance testing 

When that user fined no major problems with its accuracy, the system passers through a 

final acceptance test. This test confirms that the system needs the original goals, 

objectives and requirements established during analysis without actual execution which 

elimination wastage of time and money acceptance tests on the shoulders of users and 

management, it is finally acceptable and ready for the operation. 

7.2.4 Behavioral Testing 

The final stage of testing focuses on the software’s reactions to various activities rather 

than on the mechanisms behind these reactions. In other words, behavioral testing, also 

known as black-box testing, presupposes running numerous tests, mostly manual, to see 

the product from the user’s point of view. QA engineers usually have some specific 

information about a business or other purposes of the software (‘the black box’) to run 

usability tests, for example, and react to bugs as regular users of the product will do. 

Behavioral testing also may include automation (regression tests) to eliminate human 

error if repetitive activities are required. For example, you may need to fill 100 

registration forms on the website to see how the product copes with such an activity, so 

the automation of this test is preferable. 

7.2.5 Unit testing 

Unit testing is a critical component in the development of machine learning-based 

systems for identifying cyber attacks in smart IoT networks. It involves validating 

individual parts or units of the code to ensure that each one functions correctly on its own. 

In the context of cyber attack detection, unit testing focuses on various components such 

as data preprocessing scripts, feature extraction functions, individual machine learning 

model components, and utility functions. 

Data preprocessing is a foundational step in preparing raw IoT network data for 

machine learning models. Unit tests for data preprocessing functions ensure that 

operations like data cleaning, normalization, and transformation are performed 

accurately. 

Feature extraction functions are another vital area for unit testing. These functions 

are responsible for converting raw data into meaningful features that machine learning 



 

59  

models can utilize. Unit tests can validate that these functions correctly derive features 

such as IP addresses, port numbers, protocol types, and payload sizes from the raw 

network traffic data. Ensuring the accuracy of these features is essential for the model's 

performance in detecting anomalies and cyber attacks. 

When it comes to the machine learning models themselves, unit tests focus on 

individual components and algorithms used within these models.Unit testing in the 

identification of cyber attacks using machine learning in smart IoT networks is essential 

for validating the functionality of individual components. . This forms a robust foundation 

for building and maintaining effective cyber attack detection systems that can safeguard 

smart IoT networks against evolving threats. 

7.3 Test cases 
 

Testing a system for identifying cyber attacks using machine learning in smart 

IoT networks requires a variety of test cases to ensure the system performs accurately 

and efficiently under different scenarios. 

Here are detailed test cases that cover various aspects of the system: 

Table 7.1: Test cases 

Test 

Case Id 

Test case 

name 

Test case 

description 

Test steps Test 

case 

status 

Test 

priority 

   Step Expected Actual   

01 Upload the 

tasks dataset 

Verify the 

file is loaded 

or not 

If dataset 

is not 

uploaded 

It cannot 

display the 

file 

uploaded 

File is 

uploaded 

which 

display a 

task 

waiting 

time 

High High 

02 Upload 

patients 

dataset 

Verify either 

dataset 

loaded or not 

If dataset 

is not 

upload 

It cannot 

display 

dataset 

reading 

process 

complete 

It can 

display 

dataset 

reading 

process 

completed 

Low High 

03 Preprocessing Whether 

preprocessi 

ng on the 

dataset 

applied or 

not 

If not 

applie d 

It 

cannot 

display 

the 

It can 

display the 

necessa ry 

data for 

further 

process 

Medi 

um 

High 
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necessar 

y data 

for 

further 

Process 

04 Prediction 

Random 

Forest 

Whether 

Predictio

n 

algorithm 

applied 

on the 

data or 

not 

If not 

applie d 

Random 

tree is not 

generate d 

Rando m 

tree is 

generat ed 

High High 

05 Recommendati 

on 

Whether 

predicted 

data is 

displayed or 

not 

If not 

displa 

yed 

It cannot 

view 

predictio 

n 

containi 

ng 

patient 

Data 

It can 

view 

predicti 

on 

containi 

ng patient 

Data 

High High 

06 Noisy Records 

Chart 

Whether the 

graph is 

displayed or 

not 

If graph 

is not 

displa 

yed 

It does 

not show 

the 

variation 

s in 

between 

clean 

and 

noisy 

Records 

It shows 

the 

variatio 

ns in 

betwee n 

clean 

and 

noisy 

records 

Low Mediu m 

 

The system detects and mitigates attacks without compromising its functionality. 

These test cases cover a comprehensive range of scenarios to ensure the reliability, 
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accuracy, and robustness of the system for identifying cyber attacks using machine 

learning in smart IoT networks. Conducting these tests helps validate that the system 

performs well under various conditions and meets security and performance 

requirements. 
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CHAPTER-08 

RESULT 

 
Machine learning (ML) in smart IoT networks has been increasingly utilized for the 

identification of cyber attacks due to its capability to analyze vast amounts of data and 

detect patterns indicative of malicious activities. 

some  malicious function command injection found : 

Navie Malicious Response Injection: 

Naive malicious response injection refers to a simplistic or straightforward method of 

injecting malicious content into a response generated by a web application or service. 

This type of attack typically targets vulnerabilities in the application's output mechanisms, 

such as HTML, JavaScript, or other markup languages, with the goal of executing 

unauthorized actions or compromising the security of the system or its users. 

Complex Malicious: 

"Complex injection" typically refers to more sophisticated and intricate methods of 

injecting malicious code or commands into vulnerable systems or applications , which 

rely on straightforward exploitation of known vulnerabilities, complex injection attacks 

often involve advanced evasion techniques or manipulation of complex data structures to 

bypass security controls and achieve their objectives. 

Response Injection: 

"Response injection" refers to a type of cyber attack where an attacker injects malicious 

content into the response generated by a web application or service which involve 

injecting malicious content into the input fields or parameters of a request, response 

injection attacks occur when the application fails to properly sanitize or validate user- 

generated content before including it in the response sent back to the client. 

Malicious State Command Injection: 

"Malicious State Command Injection" refers to a type of cyber attack where an attacker 

exploits vulnerabilities in the management of application or system state to inject and 

execute malicious commands. This attack is a variation of command injection, where the 

attacker manipulates the state of an application or system to execute unauthorized 

commands, rather than directly injecting commands into input fields or parameter 

Malicious Function Command Injection: 

Function command injection is a type of cyber attack where an attacker injects malicious 
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code into a function or command within an application, often with the goal of executing 

unauthorized commands or manipulating the behavior of the application or system. 

Dos : 

A Denial-of-Service (DoS) attack is a malicious attempt to disrupt the normal functioning 

of a targeted server, service, or network by overwhelming it with a flood of illegitimate 

traffic or resource requests. 

Normal: 

It refers to legitimate activities and behaviors within the IoT network that are considered 

typical or expected under normal operating conditions. 

 

Figure 8.1: Result. 

The above paragraph specify that the attacks are identified with in the specified 

conditions. 

In the results of the algorithms, the following values are examined in order detect or 

identify the accuracy, precision, recall, and f_Score. 
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CHAPTER-09 

CONCLUSION 

 
Identifying cyber attacks in smart IoT networks through machine learning 

presents a promising approach to bolstering network security in an increasingly 

interconnected world. Through our exploration of this methodology, several key 

conclusions emerge. 

Firstly, the integration of machine learning techniques offers a dynamic and 

adaptive means of discerning normal network behavior from potentially malicious 

activities. By analyzing vast amounts of data generated by IoT devices, machine learning 

models can learn intricate patterns and anomalies, enabling them to detect and respond to 

emerging threats in real-time.Furthermore, the effiency of machine learning in cyber 

attack identification hinges on the quality and diversity of the data available for training. 

Robust datasets that encompass a wide range of network activities and attack scenarios 

are essential for enhancing the accuracy and reliability of detection algorithms. 

Additionally, ongoing data collection and model refinement are crucial for adapting to 

evolving cyber threats and maintaining a high level of detection efficacy over time. 

Moreover, the deployment of machine learning-based detection systems in smart IoT 

networks necessitates careful consideration of scalability, resource constraints, and 

privacy concerns. Implementing lightweight and efficient algorithms capable of running 

on resource-constrained IoT devices is essential for minimizing computational overhead 

and ensuring seamless integration into existing network infrastructure. The application 

of machine learning in the identification of cyber attacks within smart IoT networks 

offers a promising approach to enhancing security posture and mitigating risks 

associated with increasingly complex and interconnected IoT environments. 

By leveraging machine learning algorithms trained on historical data to recognize 

patterns of normal behavior, organizations can detect deviations indicative of cyber 

attacks, including intrusion attempts, data exfiltration, malware infections, and denial-of- 

service (DoS) attacks. Furthermore, machine learning enables proactive threat detection 

and response by continuously monitoring and analyzing real-time data streams from IoT 

devices, enabling organizations to swiftly identify and mitigate security incidents before 

they escalate. However, effective implementation of machine learning-based security 

solutions requires addressing challenges such as data privacy, model interpretability, and 



 

65  

adversarial attacks, while also ensuring seamless integration with existing security 

infrastructure and compliance with regulatory requirements. Moving forward, ongoing 

research and development efforts are necessary to advance the capabilities of machine 

learning in smart IoT security and stay ahead of evolving cyber threats. 

Cyber attacks pose a significant and growing threat in our interconnected digital 

world. As technology advances, so do the capabilities and tactics of malicious actors, 

ranging from individual hackers to sophisticated state-sponsored groups. The 

consequences of cyber attacks can be severe, ranging from financial losses and data 

breaches to disruption of critical infrastructure and even endangering lives.To mitigate 

the risks posed by cyber attacks, it's essential for individuals, organizations, and 

governments to prioritize cybersecurity measures. This includes implementing robust 

security protocols, regularly updating software and systems, conducting thorough risk 

assessments, and educating users about best practices for online safety. 
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CHAPTER-10 

Future Enhancement 

 
It is not possible to develop a system that makes all the requirements of the user. 

User requirements keep changing as the system is being used. The power of artificial 

intelligence, organizations can enhance their ability to detect and mitigate cyber threats, 

thereby safeguarding the integrity, confidentiality, and availability of IoT-driven services 

and applications in the digital age. However, continual research, collaboration, and 

innovation are imperative to stay ahead of adversaries and effectively counter emerging 

cyber threats in the ever-evolving landscape of IoT security. 

Some of the future enhancements that can be done to this system are: 

Multi-Modal Data Fusion: Incorporate multiple sources of data, such as network 

traffic logs, device logs, sensor readings, and metadata, to improve the accuracy and 

robustness of cyber attack detection. 

Anomaly Detection: Develop anomaly detection algorithms to identify abnormal 

behavior patterns in IoT networks, enabling proactive detection of emerging cyber threats 

and zero-day attacks. 

Enhance the interpretability and transparency of machine learning 

models by integrating explainable AI techniques to provide insights into the decision- 

making process and facilitate human understanding and trust in the system. 

Develop adaptive algorithms that can dynamically adjust their 

behavior and parameters based on changing environmental conditions, evolving cyber 

threats, and feedback from cybersecurity analysts to ensure continuous improvement and 

optimization. 

Integrate privacy-preserving methods such as 

federated learning, differential privacy, and secure multiparty computation to protect 

sensitive data while still enabling collaborative model training across distributed IoT 

networks. 

Explore the integration of edge computing technologies 

to perform data preprocessing, model inference, and decision-making closer to IoT 

Edge Computing Integration: 

Privacy-Preserving  Techniques: 

Dynamic Adaptation: 

Explainable AI: 
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devices, reducing latency, bandwidth usage, and dependence on centralized cloud 

resources. 

In conclusion, while significant strides have been made in identifying cyber attacks using 

machine learning in smart IoT networks, there remains substantial potential for future 

enhancements. Continued advancements in machine learning algorithms, particularly in 

the realms of deep learning and reinforcement learning, promise to increase the accuracy 

and speed of anomaly detection. Integrating more sophisticated, context-aware models 

that can understand the intricacies of IoT environments will be crucial.Finally, developing 

more robust and adaptive systems capable of evolving with emerging threats will be 

essential in maintaining resilient IoT networks in the face of an ever-changing cyber threat 

landscape. 
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