

Secure Authentication System based on Multi-Factor Authentication

PROJECT REPORT

Submitted in the partial fulfillment of the requirements for

award of the

 Six Months Online Certificate Course
in

 Cyber Security/

Data Science with Python Programming/

Artificial Intelligence and Machine

Learning
Course Duration: [22-01-2024 to 21-07-2024]

 By
PASALA NAGADEVI

 (HT No.2406CYS112

)

Under the Esteemed Guidance

Prof.B SATEESH KUMAR,

Professor & HOD, Department of

CSE, JNTUH University College of

Engineering , Jagityal

DIRECTORATE OF INNOVATIVE LEARNING &

TEACHING (DILT)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

(Formerly SCDE_SCHOOL OF CONTINUING AND DISTANCE EDUCATION)

Kukatpally, Hyderabad, Telangana State, INDIA- 500 085

2

JULY 2024

ABSTRACT

 In today’s digital landscape, access to various online platforms has become

ubiquitous, and so has the risk associated with information security. Traditional

username and password-based authentication systems have become increasingly

vulnerable to brute force attacks. The proposed project, “Secure Authentication

System Based on Multi-Factor Authentication (MFA),” aims to address this

pressing concern. MFA, which requires users to provide multiple forms of

authentication such as a combination of knowledge-based factors (e.g. One-Time

Passwords) and inherence-based factors (e.g. biometrics), significantly enhances

the security of user accounts and digital assets. The key objectives of this project

are to enhance security, reduce unauthorized access, prevent data breaches, improve

user trust, mitigate credential stuffing attacks, comply with regulations, provide

flexibility, enable secure remote access, and continuously improve security. To

achieve these objectives, the project will leverage a combination of technologies

and methods like One-Time Passwords (OTP), Biometric Authentication, Security

Tokens, and Push Notifications. Each of these technologies contributes uniquely to

the security of the system. For instance, OTPs provide a dynamic and time-sensitive

second layer of security, while biometric authentication offers a highly personalized

and difficult-to-replicate third layer. In designing and implementing this secure

authentication system, the project will prioritize user experience, scalability, and

compliance with security best practices and regulations. The system will be

developed using Python, MySQL database, and Django framework. The aim is to

design a system that is not only secure but also user-friendly and scalable, capable

of adapting to growing user bases and evolving security threats. Implementing such

a system is critical for enhancing the security of user accounts and sensitive data,

as MFA adds an extra layer of protection by necessitating multiple forms of

verification before granting access.

 The proposed system consists of three main modules; the first

module is the sign up module where the user registers his main information and

password and email id regarding predefined conditions. The second module is the

login module which is used for password comparison. The third module is

responsible for generating QR code for synchronizing the generated OTP between

the application server and authenticator (on a mobile device). There is an additional

module for generating the TOTP.

 After successful registration (sign up), the QR code is generated

regarding the generated OTP in our system. The user can use an authenticator

application on his mobile device, such as Google Authenticator, for scanning the

QR code and obtaining the synchronized OTP code. For the authentication process,

if the user enters the valid password for login, the system will forward him to the

OTP verification page to enter the valid OTP code displayed on the authenticator

application and after that user should enter the valid OTP received in their mail id

The results demonstrate the effectiveness of our proposed system.

 Keywords: password, OTP, QR code, multi-factor authentication.

TABLE OF CONTENTS

Chapter No Chapter Name page number

 ABSTRACT

1 Introduction 1

2
 Literature survey

3

2.1 introduction 3

2.2 background 3

2.3 related work 3

2.4 summary 5

3 problem statement 5

4 objectives

5 methodology 6

6 system analysis 9

6.1 introduction 9

6.2 requirements 9

6.2.1 functional requirements 9

6.2.2 non functional requirements 10

6.3 system analysis 10

6.3.1 flowchart 10

7 algorithm 18

7.1 architecture design 19

7.2 object oriented design 21

7.2.1 class diagram 22

7.2.2 sequence diagram 23

7.2.3 activity diagram 23

8 implementation 23

8.1 introduction 23

8.2 tools and languages 23

8.2.1 external libraries 24

8.2.2 Required packages list 24

8.3 main and most important codes 24

8.3.1 code for register 24

8.3.2 code for login 25

8.3.3 database 26

8.4 code for otp generation 27

8.5 evaluation testing 29

8.5.1 introduction 29

8.5.2 testing strategy 29

8.5.3 user procedures 29

8.5.4 operator procedures 30

 8.5.5 testing approach 31

5

 8.5.5..1 unit testing 31

 8.5.5..2 Run Program 33

 8.5.5.3 login 34

 8.5.5.4 token verification 34

 8.5.5.5 email otp verification 35

 9 results analysis 35

 9.1 summary 36

 10 conclusion and future scope 36

 10.1 conclusion 37

 10.2 future work 37

 References 40

 Annexure-I List of Tables 41

 Annexure-II List of Figures 42

 Chapter : 1 Introduction

 Authentication is the core of cybersecurity, and it is used to determine

who we are allowing access into our systems, applications or networks. It is the

process of verifying who a user claims to be; that he or she says, in fact -is

associated with what type. Authentication is one of the primary components in order

to create trust and securing sensitive data keeping unwanted hands away from

accessing digital resources. This process is usually also combined with

authorization, which means that after we have authenticated users (know who they

are), we can then decide what rights to give them once we know their identity.

Organizations can enforce security policies and safely guard sensitive data in

authentication systems, mitigating the risk of unauthorized access and guarding

itself from possible threaten actors through rock-solid login processes. Most used

method of authentication is using passwords, and we find this everywhere across

all the services.

 MFA is the process of combining different authentication factors to identify

a system’s user. These authentication factors are typically something one knows

(text password), something one is (biometric ex: fingerprint), and something one

has (Smart card, authentication token). The commonly known Two Factor

Authentication (2FA) typically includes two factors from separate categories, while

MFA can include several factors from the same category Authentication is proving

that a person is whom they claim to be .This is distinctly different from

identification, being "the act of asserting who a person is". These two concepts are

often mistaken. The way that authentication is done is by a person providing a

factor. This is common to access a system or resource. There are authentication

mechanisms that use only one factor. Many will recognize the most common factor

for single authentication mechanisms being a password. It is not uncommon for

access to resources to be placed behind this simple authentication mechanism.

However, this single point of failure has known vulnerabilities. The vulnerabilities

are becoming more complex as the types of attacks do as well . Among the many

challenges that exist with text-based passwords, some of the most common are

related to the memorization of quality passwords. One study found that 80% of

passwords were able to be cracked by the average personal computer in less than a

week. This concept is relevant as computing power increases over time and is due

to low complexity passwords and a lack of understanding from end users. As

participants of the same study appeared "to be unconcerned about the risks

associated with poor password composition". Moreover, 40% of users had never

changed their passwords. This has compounded in recent years due to the increase

in the number of services that require passwords, reusing passwords, and using

passwords with guessable openly known content such as a spouse’s name. This

concept contributed to the development of adding more factors for authentication.

First, there was Two Factor Authentication, then Multi-Factor Authentication to

ensure a more secure authentication of a user. Authenticating users has a deep

involvement in the field of cyber security because impersonation can pass through

authentication mechanisms and typically gives access to protected resources. In

general, this is the foundation of cyber security, and often the first line of defense.

Authentication mechanisms are typically classified by how many factors they use

and the categories of the factors. The types of factors can be categorized into one

of the following groups. Something one knows (Knowledge factor), something one

has (Possession factor), and something one is (inherence or biological factor).

Examples of knowledge factors would be things like PIN numbers, text passwords,

2

lock patterns, graphical passwords, challenge-response, etc. Examples of

possession factors would be: ID cards, NFC, RFID, smart cards, hardware tokens,

physical keys, or a device itself. Examples of biological factors would be: facial

recognition, iris, fingerprints, or even other physical characteristics such as typing

speed and speech recognition. This is the most well-known way of categorizing

authentication mechanisms. Categorization also assists in defining whether a

mechanism is 2FA or MFA. Commonly a 2FA mechanism has two different factors

from each of the three groups, and MFA has more than two and can have several

from the same group. It is not uncommon for other factors to exist and not fit into

the "textbook" definition of these categories, such as location-based authentication.

This is not technically a knowledge, possession, or biological factor. 2FA and MFA,

however, have not solved the challenges faced with authentication. End-users have

negative connotations with MFA for a variety of reasons. Adoption rates for MFA

concerning websites have stagnated. A 2018 study showed that 2FA over a growing

set of websites was close to 50% for over four years from 2014 to 2018. Both the

end-users and services providing authentication options have impacted the adoption

of MFA. MFA systems themselves are still vulnerable to attacks. Although the

types of attacks are numerous, familiar and relevant examples are: Leaks from a

server, phishing, theft, man-in-the-middle, social engineering, shoulder surfing,

keyloggers, spyware, and other types of malware/Trojans. Despite this, it is still a

safe assumption that MFA and 2FA are more secure than single-factor systems.

This is because the more factors that correlate to a user, the more confidently one

can assure the identity of a person.

 Chapter 2: Literature survey

3

2.1 Introduction

 The literature review centers on two main facets: the system perspective and the

methodological standpoint. Regarding the system aspect, it delves into the presently

utilized tools, highlighting their limitations. On the methodological front, it

explores alternative approaches proposed by various researchers.

2.2 Background

Authentication is crucial when individuals access systems to confirm their identity

and safeguard their private data. Consequently, various authentication techniques,

incorporating elements such as knowledge, ownership, and OTPs, have been

proposed. In logins, authentication is vital to allow people into systems so that they

can prove who they are and help protect their data from being seen by others.

Therefore different authentication methods have been introduced including using

something you know, own and 1-time passwords (OTPs).

 It allows a single authentication process for device access, which is a knowledge

based authorization. The main method of user authentication and access control

among all internet banking systems is the use of knowledge attributes, so it seems

correct taking into consideration both what technology we trust and how familiar

are most users with given solutions. However, knowledge-based authentication is

exposed to a wide range of attack types: brute force attacks; rainbow table attacks;

dictionary or wordlist based password-attacks and combinations thereof along with

social engineering + phishing techniques (accordingly frameworks for man-in-the-

middle MITMF have been developed); password-based assaults through session

hijacking(s) as well malware. Further, it was recognised that a reliance solely on

password-based authentication; User login studies have established that an

incredible 86% of user selected passwords are weak. In the current security scenario

that is replete with shortcomings concerning KBA, a secure solution like

Ownership-Based Authentication evolved to substantially boost authentication and

verification of online transactions for devices as well as applications.

 Property authentication, which often needs security hardware tokens, is usually

used for two factor systems. Returning an element could be used as a secondary

form of validation but also the primary authentication mechanism. This role is

where you should not check authentication depending solely on who owns the given

partitions. This is true for even bad passwords as a weak password combined with

possession based authentication still adds hurdles that potential attackers must take

to gain access additionally

2.3 Related work

Authentication mechanisms today create a double layer gateway prior to unlocking

any protected information. This double layer of security, termed as two factor

authentication, creates a pathway that requires validation of credentials

(username/email and password) followed by creation and validation of the One

Time Password (OTP). The OTP is a numeric code that is randomly and uniquely

generated during each authentication event. This adds an additional layer of

security, as the password generated is a fresh set of digits each time an

authentication is attempted and it offers the quality of being unpredictable for the

next created session. The two main methods for delivery of the OTP is:

1. SMS Based: This is quite straightforward. It is the standard procedure for delivering

the OTP via a text message after regular authentication is successful. Here, the OTP

is generated on the server side and delivered to the authenticator via text message.

It is the most common method of OTP delivery that is encountered across services.

4

2. Application Based: This method of OTP generation is done on the user side using

a specific smartphone application that scans a QR code on the screen. The

application is responsible for the unique OTP digits. This reduces wait time for the

OTP as well as reduces security risk as compared to the SMS based delivery.

 The most common way for the generation of OTP defined by The Initiative for Open

Authentication (OATH) is the Time Based One Time Passwords (TOTP), which is

a Time Synchronized OTP. In these OTP systems, time is the cardinal factor to

generate the unique password. The password generated is created using the current

time and it also factors in a secret key. An example of this OTP generation is the

Time Based OTP Algorithm (TOTP) described as follows:

1. Backend server generates the secret key

2. The server shares secret key with the service generating the OTP

3. A hash based message authentication code (HMAC) is generated using the obtained

secret key and time. This is done using the cryptographic SHA-1 algorithm. Since

both the server and the device requesting the OTP have access to time, which is

obviously dynamic, it is taken as a parameter in the algorithm. Here, the Unix

timestamp is considered which is independent of time zone i.e. time is calculated in

seconds starting from January First 1970. Let us consider

“0215a7d8c15b492e21116482b6d34fc4e1a9f6ba” as the generated string from the

HMAC-SHA1 algorithm.

4. The code generated is 20 bytes long and is thus truncated to the desired length

suitable for the user to enter. Here dynamic truncation is used. For the 20-byte code

“0215a7d8c15b492e21116482b6d34fc4e1a9f6ba”, each character occupies 4 bits.

The entire string is taken as 20 individual one byte strings.

 We look at the last character, here a. The decimal value of which is taken to determine

the offset from which to begin truncation. Starting from the offset value, 10 the next

31 bits are read to obtain the string “6482b6d3″. The last thing left to do, is to take

our hexadecimal numerical value, and convert it to decimal, which gives

1686288083. All we need now are the last desired length of OTP digits of the

obtained decimal string, zero-padded if necessary. This is easily accomplished by

taking the decimal string, modulo 10 ^ number of digits required in OTP. We end

up with “288083” as our TOTP code.

5. A counter is used to keep track of the time elapsed and generate a new code after a

set interval of time

6. OTP generated is delivered to the user by the methods described above.

 Apart from the time-based method described above, there also exist certain

mathematical algorithms for OTP generation for example a one-way function that

creates a subsequent OTP from the previously created OTP. The two factor

authentication system is an effective strategy that exploits the authentication

principles of “something that you know” and “something that you have”. The

dynamic nature of the latter principle implemented by the One Time Password

Algorithm is crucial to security and offers an effective layer of protection against

5

malicious attackers. The unpredictability of the OTP presents a hindrance in peeling

off the layers that this method of cryptography has to offer.

2.4 Summary

 The literature review provides a comprehensive overview of authentication methods

with a focus on knowledge-based and ownership-based authentication and

biometrics. It discusses the importance of authentication in confirming individuals'

identities and protecting their private data.

 chapter 3: Problem statement

In the current digital landscape, single-factor authentication methods, such as

password-based logins, are vulnerable to various attacks, including phishing, brute

force, and dictionary attacks. These security breaches can lead to unauthorized

access, identity theft, and data breaches, which can significantly harm users and

businesses alike. To address these security concerns, there is a critical need for a

more robust authentication system that can ensure the integrity and confidentiality

of user data while maintaining accessibility and ease of use for legitimate users. A

significant issue solved by multi-factor authentication has to be that passwords are

an insecure way of authenticating users. It is clear that passwords are incredibly

easy to be stolen, guessed and cracked leaving sensitive information compromised

in the process. Attackers seek passwords to compromise access with multiple

different methods like phishing, keylogging or social engineering and it makes way

for unauthorized good pass into an account/system.

Technical Challenges

Designing a Secure QR Code System: Implementing a QR code system that is

secure against potential vulnerabilities, such as QR code hijacking or tampering.

Email OTP Security and Delivery: Ensuring that email OTPs are delivered securely

and promptly, without being susceptible to interception or manipulation.

User Interface Design: Developing a user interface that is intuitive and guides users

through the multi-factor authentication process without causing frustration or

confusion.

Error Handling and Recovery: Implementing robust error handling mechanisms to

cope with failed authentication attempts or connectivity issues while maintaining

system security.

Performance Optimization: Optimizing the system to handle the additional load of

multi-factor authentication without slowing down the login process or affecting the

overall application performance.

Solution Scope

The solution should cover the full spectrum of user authentication, from account

creation to session management, ensuring that each step is secured by multi-factor

6

authentication. This includes:

 User Registration: Incorporating MFA during the account creation process to

verify the user's identity.

Login Flow: Implementing a secure and efficient MFA login flow that includes

password authentication, followed by QR code and email OTP verification.

Session Management: Ensuring that user sessions are secure and that access control

mechanisms are in place to prevent unauthorized access.

By addressing these challenges and objectives, the secure authentication system

based on multi-factor authentication using QR codes and email OTPs in Django

will provide a comprehensive solution that enhances security without

compromising user experience.

 Chapter 4 :Objectives

A secure authentication system, particularly one that employs multi-factor

authentication (MFA) using QR codes and Email OTPs (One Time Passwords), is

a robust approach to enhancing user security in applications developed using

Django. The objectives of such a system can be outlined as follows:

1. Enhance Security

prevent unauthorized access:By focusing on these objectives, a secure authentication

system based on multi-factor authentication using QR codes and email OTPs in a Django

application can provide a secure, user-frieEnsure unauthorized accounts: The system

reduces the chances of preventing unapproved access by forcing multiple verification

procedures. Only an attacker possessing both the user password and access to QR code or

email OTP could successfully attack a regular account.

Mitigate Phishing Attempts: QR codes can capture session keys or tokens for

transmission and enable the use of a secure channel - all but preventing phishing. Email

OTP: To validate user actions, providing more security to unauthorized modifications over

user accounts

2 Compliance and Regulatory Standards

Adherence to Industry Standards: Implementing MFA helps in complying with

industry standards and regulations that require strong authentication mechanisms,

such as those in the financial and healthcare sectors.

Audit and Accountability: The system logs attempts to log in or access services,

which can be used for auditing purposes and to monitor compliance with security

policies.

3. User Experience and Usability

Convenience for Users: MFA can be designed to be user-friendly by offering

multiple options (QR code and email OTP) for second-factor authentication,

7

catering to different user preferences and accessibility.

Reduced Reliance on Passwords: Reducing the dependency on passwords alone

can lead to better user experience by alleviating the burden of remembering

complex passwords or managing password resets.

4.System Reliability

Redundant Authentication Methods: The presence of multiple authentication

methods ensures that if one factor fails or is unavailable, another can be used,

maintaining system integrity and availability.

Scalability: The system is designed to handle increased user loads without

compromising security or performance, making it suitable for large-scale

applications.

5. Integration and Compatibility

Django Framework Integration: Leveraging Django's rich ecosystem and security

features ensures compatibility with the existing Django project and can seamlessly

integrate with Django's user management and authentication modules.

Third-Party Service Compatibility: The system can be designed to integrate with

third-party authentication services, such as Google Authenticator for QR codes or

email services for sending OTPs, providing flexibility and robustness in the

authentication process.

6. Cost-Effectiveness

Cost Reduction: Implementing MFA with existing mechanisms like email can

reduce the cost of additional hardware tokens required for some MFA methods,

making it a cost-effective solution for enhancing security.

Prevention of Fraud and Theft: By significantly reducing the risk of account

breaches, the system can prevent financial losses and damage to reputation, which

can outweigh the initial investment in setting up a MFA system.

By focusing on these objectives, a secure authentication system based on multi-

factor authentication using QR codes and email OTPs in a Django application can

provide a secure, user-frieEnsure unauthorized accounts: The system reduces the

chances of preventing unapproved access by forcing multiple verification

procedures. Only an attacker possessing both the user password and access to QR

code or email OTP could successfully attack a regular account.

• Prevent Unauthorized Access.

8

• Mitigate Password-related Risks.

• Safeguard Sensitive Transactions.

• Comply with Regulatory and Compliance Standards.

• Improve User Experience.

Chapter 5 :Methodology

System development encompasses various phases, including planning,

development, and maintenance, which are crucial for project success. Here is an

extended version of the previous text that includes the maintenance phase:

 System development can be approached through various methods, some of which

offer more advantages than others. Common system development models include

the Waterfall model, Spiral model, and Incremental development. For our

application, we have opted for the agile model, a contemporary software

development approach that offers several benefits over the traditional Waterfall

model. The Agile model is characterized by iterative cycles, as illustrated in Figure

5-1. This model enables developers to break down the software application's

development into discrete components. Within each cycle, a specific application

component is worked on. Given the project's scope, each agile model cycle

comprises five essential steps:

● Planning: In the initial planning phase, we define the project scope,

objectives, and requirements. This is a crucial step to ensure that the project is well-

defined and aligns with the intended goals.

● Analysis: During this phase, we gather information and analyze components

by identifying the actors and their respective functions.

● Design: In this stage, we create the design for the component that is to be

developed

● Implementation: This step involves the actual implementation of the

component under development.

● Evaluation Testing: Here, we conduct thorough testing of the component

being developed.

Following the completion of a cycle, we proceed to the maintenance phase, where

we ensure that the system operates smoothly and remains up to date with changing

requirements and technology. The maintenance phase involves routine updates, bug

9

fixes, and improvements to enhance the system's performance and longevity. It also

includes user support and addressing any issues that may arise after deployment.

Figure 5-1

 chapter 6: System analysis

6.1 Introduction

In this chapter, we conduct a thorough examination of the proposed system,

covering a detailed assessment of its feasibility, an exploration of its functional and

nonfunctional prerequisites, an overview of the overarching system structure, and

an outline of the development approach to be employed for project completion.

6.2 Requirements

This section provides an overview of the project's deliverables' requirements, which

can be classified into two distinct categories based on their nature: functional

requirements and non- functional requirements.

6.2.1 Functional Requirements

● User Registration: Users should be able to create new accounts by providing

essential information such as username, password, and email address.

● Login: Users should be able to log in using their registered credentials (e.g.,

username and password)

● Password Policies: Enforce password policies, including password

complexity requirements (e.g., minimum length, special characters)

● One-Time Password (OTP) Generation: Implement the generation of OTPs,

which are temporary codes, typically numeric, that users can use for authentication.

● Token Delivery Methods: Provide token delivery using authenticator

application and QR code associated with the OTP generator for maintaining the

synchronization.

● Validate: Ensure OTPs are valid fora limited time window to enhance

10

security.

● Email OTP Delivery Methods: provide OTP delivered to the registered mail

Id.

● Validate: Ensure OTPs are valid fora limited time window to enhance

security.

.

6.2.2 Non-Functional Requirements

● Usability: The user interfaces for registration, login, and account

management should be intuitive and user-friendly.

● Resource Efficiency: Optimize resource usage (CPU, memory, storage) to

minimize costs and reduce the system's environmental impact.

● Resource Efficiency: Optimize resource usage (CPU, memory, storage) to

minimize costs and reduce the system's environmental impact.

● Maintainability: Design the system in a modular and maintainable way,

allowing for updates and enhancements with minimal disruption.

● Load Testing: Conduct load testing to identify performance bottlenecks and

optimize system performance.

6.3 System Analysis

 This section focuses on the analysis phase of the proposed system. It describes

the process modeling and system user interaction. The following tables, explains

the use cases in detail, each includes actors, description, precondition, and event

flow.

6.3.1 Flow Chart

Figure 6-1 presents a flow chart depicting the structure of the proposed application

program. This visual representation is highly valuable in the process of designing

the application program.

11

 Figure 6-1

The following tables, explains the use cases in detail, each includes actors,

description, precondition, and event flow.

 Table 6-1 Register

Use case number UC: 1

Use case name register

Actors User

Description This use case involves the user creating a new

account by

Providing the necessary information.

Pre-condition The user must have access to the registration page

or

Interface.

Scenario flows 1. User accesses the registration page or interface.

2. System presents a form for the user to enter the

required details (username, password, email,

etc.)

3. User enters the required information.

4. System validates the entered information.

5. If the validation is successful, the system

creates a new user account and stores the

account details.

6. User account is registered successfully.

7. QR code is now displayed to the user.
8. Scan QR code By using Google Authenticator

Post condition The user account is successfully registered in the
system.

12

 Table 6-2 Generate QR code.

Use case number UC: 2

Use case name Generate QR code

Actors system

Description Generate QR code containing OTP to user after

successful Sign up

Pre-condition The user must Sign up to display the QR code

Scenario flows 1. The user should scan the generated QR code

by using Google authenticator.

2. Now user have a complete synchronize.

Post condition The user scanned the generated QR code and no

need to QR anymore.

 Table 6-3Generate OTP

Use case number UC: 3

Use case name Generate OTP

Actors User, System

Description This use case involves the user generating a one-

time

Password (OTP) for authentication or verification

purposes.

Pre-condition The user requests to generate an OTP.

Scenario flows 1. Users should sign up to generate OTP.

2. System generates a unique one-time

password and associates it with the user's

account.

3. System sends the generated token to the user.

4. System sends the generated OTP to the user.

Post condition The system generates and sends an OTP to the user

for

Further authentication or verification.

13

 Table 6-4 Login

Use case number UC: 4

Use case name Login

Actors User, system

Description This use case involves the user logging into their

account using their credentials.

Pre-condition The user must have a registered account.

Scenario flows 1. User accesses the login page or interface.

2. System presents a form for the user to

enter their credentials (username, password,

etc.).

 Table 6-5 Verify Username and password

Use case number UC: 5

Use case name Verify Username and Password

Actors User, System

Description This use case involves the user verifying their
entered

Username and password combination.

Pre-condition The user must provide their username and password.

Scenario flows 1. Users provide their username and password.

2 System validates the provided username and

password against the stored user account

information.

3 .System confirms the correctness of the

username and password combination.

4.The system returns a verification result indicating

the

Validity of the username and password.

Post condition The system verifies the correctness of the provided

username and password combination.

 Table 6-6 Display login error

14

Use case number UC: 6

Use case name Display login error

Actors User, System

Description This use case involves displaying an error message

when the user fails to log in.

Pre-condition The user's login attempt fails due to incorrect

credentials.

Scenario flows 1. System detects that the login attempt was

unsuccessful.

2. System displays an appropriate error message

indicating the reason for the failure.

Post condition An error message is displayed to the user explaining
the

Login failure.

 Table 6-7 Access Using token

Use case number UC: 7

Use case name Access Using OTP

Actors User, System

Description This use case involves accessing a secure feature or

action using the generated token.

Pre-condition The user has a valid token.

Scenario flows 1. User enters the token showing in google
authenticator.

2. User submits the token for verification.

3. System validates the entered token.

4. System grants access to the requested secure

feature or action if the token is valid.

Post condition The user gains access to the secure feature or action.

15

Table 6-8 Verify token

Use case number UC: 8

Use case name Verify token

Actors System

Description This use case involves verifying the entered token for

authentication purposes.

Pre-condition The user has entered a token.

Scenario flows

1. System compares the entered token with the

generated token.

2. System determines whether the entered token

is valid or not.

Post condition The entered token is successfully verified.

Table 6-9 Display incorrect token

Use case number UC: 9

Use case name Display Incorrect token

Actors User, System

Description This use case involves displaying an error message

when the entered token is incorrect.

Pre-condition The user's entered OTP does not match the generated

token.

Scenario flows

1. System detects that the entered token is incorrect.

2. System displays an appropriate error message

indicating the incorrect token.

Post condition An error message is displayed to the user indicating

the

Incorrect token.

16

 Table 6-10 Access Using OTP

Use case number UC: 7

Use case name Access Using OTP

Actors User, System

Description This use case involves accessing a secure feature or

action using the generated OTP.

Pre-condition The user has a valid OTP.

Scenario flows 5. User enters the OTP showing in google
authenticator.

6. User submits the OTP for verification.

7. System validates the entered OTP.

8. System grants access to the requested secure

feature or action if the OTP is valid.

Post condition The user gains access to the secure feature or action.

 Table 6-11 Verify OTP

Use case number UC: 8

Use case name Verify OTP

Actors System

Description This use case involves verifying the entered OTP for

authentication purposes.

Pre-condition The user has entered an OTP.

Scenario flows

3. System compares the entered OTP with the

generated OTP.

4. System determines whether the entered OTP is

valid or not.

Post condition The entered OTP is successfully verified.

Table 6-12 Display incorrect OTP

17

Use case number UC: 9

Use case name Display Incorrect OTP

Actors User, System

Description This use case involves displaying an error message

when the entered OTP is incorrect.

Pre-condition The user's entered OTP does not match the generated

OTP.

Scenario flows

3. System detects that the entered OTP is incorrect.

4. System displays an appropriate error message

indicating the incorrect OTP.

Post condition An error message is displayed to the user indicating

the

Incorrect OTP.

 Chapter 7 :Algorithm

18

In the proposed method, we have utilized TOTP as a starting algorithm to produce

needed one time passwords.TOTP is dependent on HTOP; However, HTOP is used

counterwhereas TOTP is a time-based algorithm. TOTP is going to generate an

innovative worth after a determined period. Thisparticular occasion is known as the

time step. TOTP supportsHMAC-SHA2 and HMAC-SHA1 hash functions . The

Proposed system has two phases, namely: registration stage, an authentication

phase. A comprehensive explanation of each phase is provided below. Before

making use of this service, the user should register the information of theirs during

a procedure known as the registration phase. Verification of that information may

just be achieved by a procedure known as an authentication phase. Each of the

suggested materials and strategies are completed in the system during both

registration process as well as the login procedure.

Registration Phase

After the registration is done, the client app creates a six digit one time password

(OTP) that may be utilized for the authentication aim. the registration process of

the proposed system is working as follows.

 Step 1: The user input his credential information on the server.

Step 2: The server stores the user's information.

Step 3:The server generates the QR code and verifies the token

Step 4:The user verifies the QR code using the user's mobile device and enters the

token .

Step 5: The registration process was successful.

step 6: user’s login after entering the credentials the server generates a token and after email otp.

 authentication phase:

Step 1: The user input his credential information on the server.

Step 2: The server determines the user’s information.

Step 3: The server generates the QR code.

Step 4: On the user side, the user will open the application.

Step 5: the user will get TOTP number after decode the QR code

Step 7: The user enter the token to verify

Step 8: the user will input the TOTP number in the server side, if matched,

Step 9: Authentication successful

19

 7.1 Architecture design

The system architecture of our project (multi-factor authentication) involves

components such as the user interface, backend server, user management, TOTP

generation, authenticator app, time synchronization, TOTP verification, multi-

factor integration, and security measures. The user interface allows users to initiate

the authentication process, while the backend server handles requests and

coordinates TOTP generation and verification. User management stores account

information, and TOTP generation generates passwords based on shared secret

keys. The authenticator app generates TOTPs on the user's device. Time

synchronization ensures accurate TOTP generation, and TOTP verification

compares user-provided TOTPs with expected values

 Figure 7-1 Architectural design

TOTP algorithm (RFC 6238) implies that an OTP is a product of two parameters

encrypted together. These are a common value, which is a shared secret key, or

seed; and a variable, in this case – the running time. These parameters are encrypted

with a hash function.

https://tools.ietf.org/html/rfc6238

20

 Figure 7-2 TOTP algorithm

Here’s a TOTP algorithm example to illustrate:

A user wants to log into a TOTP MFA protected application or website. For the OTP

authentication to run, the user and the TOTP server need to initially share a static

parameter (a secret key).When the client logs into the protected website, they have

to confirm they possess the secret key. So their TOTP token merges the seed and the

current time step and generates a HASH value by running a predetermined HASH

function. This value essentially is the OTP code the user sees on the token.

Since the secret key, the HASH function, and the timestep are the same for both

parties, the server makes the same computation as the user’s OTP generator.

The user enters the OTP and if it is identical to the server’s value, the access is

granted. If the results of the calculations aren’t identical, the access is, naturally,

denied.To explain the above example a bit let’s note here that the mentioned seed is

a string of random characters, usually 16–32 characters long. “Sharing” the key

usually implies scanning a QR code that shows the seed generated by the server with

the client’s TOTP app. alternatively, the key is already programmed in their TOTP

device. The time step is calculated using UNIX time, which starts on January 1, 1970,

UTC. The timesteps are to be 30 or 60 seconds, so the time value used for TOTP is

21

the number of seconds run since 00:00 January 1, 1970, divided by 30, or 60. Finally,

the mentioned HASH function is a cryptographic mathematical function that simply

changes one value into another and usually shortens the result to 6-8 symbols. This

result is what we called a HASH value above.

7.2 Object Oriented Design

7.2.1 Class Diagram

In the class diagram, we've organized and grouped the various elements of the

proposed system, such as (users, registration, login, token generation, and OTP)

based on their specific functions and characteristics. We've used Python classes to

represent each entity and define their functionalities. Figure 7-2 below provides a

visual representation of the essential classes that have been identified and are

scheduled for development in this project.

Figure 7-3 Class Diagram

7.2.2 Sequence Diagrams

22

Figure 7-4 sequence diagram

There is a type of interaction diagram that provides a comprehensive depiction of

the step-by- step execution of operations. These diagrams depict the interactions

between objects within a collaborative context. Figure 7-4 presents the sequence

diagrams for the proposed system. These diagrams provide a time-focused

representation of the application flow, showcasing the sequence of interaction they

occur.

7.2.3 Activity Diagram

Figure 7-5 illustrates the activity diagram of the activity diagram for the proposed

application.

23

 Chapter 8: Implementation
8.1 Introduction

During this stage, the system specifications are transformed into a functional and

dependable solution. This is when the actual coding of the system takes place. The

duration and effort required for this phase are significantly influenced by the

preceding phases, as both the analysis and design stages serve as the foundation for

implementation. In this same phase, initial testing, such as unit testing, is conducted

by the developer to confirm if the system's requirements at the unit level align with

the development. Typically, it's challenging to accurately predict the duration of

this phase because practical challenges may arise when translating the conceptual

design into an executable one.

8.2 Tools and Languages

This section presents tools and language used during the system implementation.

Table 8-1 Technology summary

Technolo

gy

construct

Usage

python To develop

authentication

system

Vs code An integrated

development

environment (IDE)

for python

MySQL To establish a

connection to a

MySQL database

from

python

Django To develop the

project

24

8.2.1 External Libraries

● mysqlclient-2.2.4.dist-info

● pyotp-2.9.0.dist-info

● pip-24.1.1

8.2.2 Required packages list

● Django==5.0.6

● django-otp==1.5.0

● mysqlclient==2.2.4

● pyotp==2.9.0

● sqlparse==0.5.0

● tzdata==2024.1

8.3 Main and Most Important Codes

8.3.1 Code for register

This code snippet shows the user interactions that handle login and user registration

in a GUI application in Figure 8.1, 8.1.1, 8.2, 8.2.1 It creates a new login window

when a button is clicked and registers the user by storing their information in a

database in figure 8-3.

 Figure 8-1 code for register

25

 Figure 8-1-1 Register page

8.3.2 code for login

Figure 8-2 Code for login page

26

 Figure 8-2-1 login page

Figure 8-3 database registry

8.3.3 Database

First, we created a database in MySQL because it is an open-source database,

meaning it is freely available for use and modification Figure 5-3. This reduces

software costs and allows for customization to meet specific needs. And is known

for its simplicity and ease of use and can handle large amounts of data and supports

scalability by allowing users to efficiently manage and organize databases as they

grow. It's suitable for both small-scale projects and large enterprise applications.

MySQL includes robust security features to protect data integrity and privacy. It

supports user authentication, access controls, and encryption, helping developers

implement secure database applications. Integration Capabilities MySQL integrates

well with various programming languages and development frameworks. It

27

provides connectors and APIs for languages such as Java, Python, PHP, and more,

facilitating seamless integration with different applications. Overall, MySQL is a

versatile and powerful database management system that is widely used in web

development, enterprise applications, and various other domains due to its

reliability, performance, and extensive feature set.

Figure 8-4 sql database

8.4 Code for OTP generation

 The code generates an OTP token by calculating a counter value based on a

timestamp, generating a hash using the HMAC-SHA1 algorithm with a shared

secret key, extracting part of the hash, and converting it into a digital OTP token.

The code also includes methods to generate an OTP authentication URL, generate

a QR code image for the URL, and display the QR code and OTP code in the

graphical user interface (GUI).

28

Figure 8-4-1 code for OTP

Figure 8-4-2 MFA setup

29

Figure 8-4-3 MFA verify

8.5 Evaluation Testing

8.5.1 Introduction

The testing process is part of the software development cycle. It involves gathering

information about the quality of a system's operation and the implementation of its

various features. Evaluation testing is a process that aims to evaluate the quality of

a system's operation. It involves gathering information about its requirements and

characteristics. For testing of our project, I followed three levels of testing: unit

testing, integration testing, and system testing.

8.5.2 Testing Strategy

The following are all the types of testing which are going to be illustrated more in

the following sections:

• Unit Testing

• Integration Testing

• Performance Testing

8.5.3 User Procedures

There are 9 main components that were mentioned previously. The combinations

are as follows.

• Graphical User Interface (GUI)

• Database

• Registration

• QR generation token

• Login

• Token entry

30

• Token verification

• Email OTP entry

• OTP verification

8.5.4 Operator Procedures

The requirements which should be available in order for the testing to take a place

that leads to testing the model in an accurate way are as the following.

• Computer Device

• Django to Run Project

• google Authenticator to scan the Generated QR Code

• My SQL database

8.5.5 Testing Approach

This section describes the approaches for testing which are going to be illustrated

in sufficient detail to explain the major tasks, and types of testing to be performed.

Also, explaining the methods, and the purpose of using these methods.

 Figure 8-5 testing strategy

31

8.5.5.1 Unit Testing

Individual units or components of software are tested in unit testing, which is a sort

of software testing. The goal is to ensure that each unit of software code works as

intended. Developers perform unit testing throughout the development (coding)

phase of an application. Unit tests are used to isolate a part of code and ensure that

it is correct. A singular function, method, procedure, module, or object might be

considered a unit. The following shows the unit testing which has been performed

on the project.

 8.5.5.2 Run Program

 Table 8-2

step action UI unit

response

1 Run
Program

Register page
will displayed

Figure 8-6 register page

 User enter the required fields QR code will be displayed that shown in figure and

user enters the token then the login page will be displayed.

32

Figure 8-7

Figure 8-8 google authenticator

 Users should scan the QR code using a mobile device and enter the token from google

authenticator app the registration of the user will be successful. The google authenticator

shown in Figure 8-8

33

8.5.5.3 Login

 Table 8-3

Figure 8-9 login

8.5.5.4 Token verification

 Table 8-4

Step Action UI Unit Response

3 Enter The verification code

displayed in Google

Authenticator

If the token is

correct, UI will

move to the email

verification page

Figure 8-10Token verification

8.5.5.5 email otp verification

Step Action UI Unit Response

2 Enter Username and

Password

IF username and password

correct UI will move to OTP

entry page

34

Table 8-5
Step Action UI Unit Response

3 Enter The verification code

received to the registered

mail id.

If the OTP is

correct, UI will

move to the

welcome page

Figure 8-11 email verification

35

 Chapter 9: Results & Analysis

The expectation is that the response time of the detection action is going to be

acceptable. Also, the response time of the model that handles the matching with the

database is going to be reasonable. The below figure shows the process of the

project.

 Figure 9-1 registration page

36

Figure 9-2 QR code generator for registration process

Figure 9-3 login page

Figure 9-4 Verifying token

37

Figure 9-5 generating email OTP

Figure 9-6 welcome page

38

Figure 9-7 database page

9.1 Summary

In this chapter, the system is tested through three approaches of testing; unit

testing, integration testing, and performance testing. According to the testing

results, the model performed as expected.

Chapter 10: Conclusion and Future scope

10.1 conclusion

For manipulating the vulnerabilities associated with using the password as a single-

factor authentication method, our designed and implemented system considered

two- factor authentication using the password comparison and time-based one-time

password (TOTP) which is considered the most secure method to thwart

unauthorized access, where the code is changed every 60 seconds.

The developed system consists of three main modules, sign up module, login, and

TOTP generation module, in addition to auxiliary module for generating QR code

for synchronizing the generated OTP between the application server and

authenticator (on a mobile device). After successful registration, the QR code is

generated regarding the generated OTP and the user can scan it using an

authenticator application, such as Google Authenticator, for obtaining the

synchronized OTP code. If the user enters the valid password for login, the system

will forward him to the token verification page to enter the valid token code

39

displayed on the authenticator application and after the email verification page

displays Results of the conducted evaluation testing demonstrating the effectiveness

of the developed system.

10.2 Future scope

In future, we may consider additional features to the system, by considering a third

factor of authentication, biometric features, such as fingerprint, face recognition,

hand geometry to reinforce the authentication mechanism.

References

40

[1](n.d.). Django MFA — django-mfa 1.0 documentation. Retrieved July 26, 2024,

from https://django-mfa.readthedocs.io/en/latest/

[2]cloud-with-django (Cloud With Django) · GitHub. (n.d.). GitHub. Retrieved July

26, 2024, from https://github.com/cloud-with-django

[3]dasguptha d, r. a. (n.d.). A fuzzy decision support system for multifactor

authentication. A fuzzy decision support system for multifactor authentication.

https://link.springer.com/article/10.1007/s00500-017-2607-6

 [4]The Importance of Testing Multi-Factor Authentication · CODA. (n.d.). CODA.

Retrieved July 26, 2024, from https://www.codasecurity.co.uk/articles/mfa-testing/

 [5]Jain, S. (2024, July 3). Agile Development Models - Software Engineering.

GeeksforGeeks. Retrieved July 26, 2024, from

https://www.geeksforgeeks.org/software-engineering-agile-development-models/

 [6] Joshi, P. (2018). Enhanced Security in Authentication Using QR Code.

International Journal for Research in Applied Science and Engineering Technology.

https://doi.org/10.22214/IJRASET.2018.4455.

[7]Kamrul, M., H. S. Z. (2020). An Improved Time-Based One Time Password

Authentication Framework for Electronic Payments.

https://doi.org/10.14569/ijacsa.2020.0111146.

[8]Kumar, a. R. (2012). A Comprehensive Study on Multifactor Authentication. A

Comprehensive Study on Multifactor Authentication, 561-568.

https://doi.org/10.1007/978-3-642-31552-7_57.

[9]Pretorius, A. (2022, November 14). Multi-factor authentication (MFA) for your

Django admin page. Cloud With Django. Retrieved July 26, 2024, from

https://www.cloudwithdjango.com/multi-factor-authentication-mfa-for-your-

https://django-mfa.readthedocs.io/en/latest/
https://github.com/cloud-with-django
https://link.springer.com/article/10.1007/s00500-017-2607-6
https://www.codasecurity.co.uk/articles/mfa-testing/
https://www.geeksforgeeks.org/software-engineering-agile-development-models/
https://doi.org/10.22214/IJRASET.2018.4455
https://doi.org/10.14569/ijacsa.2020.0111146
https://doi.org/10.1007/978-3-642-31552-7_57
https://www.cloudwithdjango.com/multi-factor-authentication-mfa-for-your-django-admin-page/

41

django-admin-page/

[10]Sonawane, S, T. D. (2014). Risk Based Multilevel and Multifactor

Authentication using Device Registration and Dynamic QR code based OTP

Generation. International Journal of Advanced Research in Computer and

Communication Engineering. https://doi.org/10.17148/IJARCCE.2014.31053.

https://www.cloudwithdjango.com/multi-factor-authentication-mfa-for-your-django-admin-page/
https://doi.org/10.17148/IJARCCE.2014.31053

42

 Annexure – I

 LIST of tables

Table 6.1 Register……………………………………………….. … ……………... 11

Table 6.2 Generate QRcode……………………………………….. …………………… 12

Table 6.3 Generate OTP…………………………………………… ……... …………….12

Table 6.4 Login……………………………………………………………………………13

Table 6.5 Verify username & Password………………………………. ………………….13

Table 6.6 Display Login error……………………………………………………………..14

Table 6.7 Access using Token………………………………………………………….….14

Table 6.8 Verify token……………………………………………………………………..15

Table 6.9 Display Incorrect Token………………………………………………………..15

Table 6.10 Access using OTP……………………………………………………………..16

Table 6.11 Verify OTP……………………………………………………………………..16

Table 6.12 Display Incorrect OTP………………………………………………………....17

Table 8-1 Technology Summary………………………………………………….……....23

Table 8-2 Run program………………………………………………………..………….31

Table8-3 Login…………………………………………………………………………... 33

Table 8-4 Token verification………….……………………………………………….….33

Table 8-5 Email otp verification……………………………...…………………….……..33

43

 Annexure –II

 LIST of Figures
Figure5-1………………………………………………………………………………….9

Figure6-1………………………………………………………………………………….11

Figure7-1………………………………………………………………………………….19

Figure7-2………………………………………………………………………………….20

Figure7-3………………………………………………………………………………….21

Figure7-4………………………………………………………………………………….22

Figure7-5………………………………………………………………………………….22

Figure 8-1 Code for register…...…………………………………………………………..24

Figure 8-1-1 Register Page………………………………………………………….……..25

Figure 8-2 Code for Login page…...………………………….…………………………..25

Figure 8-2-2 Login page………..………………………………………………………….26

Figure 8-3 Database Registry……..……………………………………………………….26

Figure 8-4 Sql database……….…………………………………...………………………26

Figure 8-4-1 Code for OTP…..……………………………………………………………26

Figure 8-4-2 MFA Setup…………..……………………………………………………....27

Figure 8-4-2 MFA

Verify...…………………………………………………………….…..28

Figure 8-5 Testing strategy………………………………………………....…………….30

Figure 8-6 Register page………...………………………………………………………..31

Figure 8-7 QRcode generated………..………………………….………………….…….32

Figure 8-8 Google Authenticator…..……………………………………………….…….32

Figure 8-9 Login ………………..…………………………………………………….…..33

Figure 8-10 Token Verification……………….………………………………………..….33

Figure 8-1 Email Verification …………………………………………………………..…33

Figure 9-1 Registration page………………………………………………………………34

44

Figure 9-2 QR code generator for registration process……….…………………………...35

Figure 9-3 Login page…………….……………………………………………………….35

Figure 9-4 Verifying token………..………………………………………………...……..36

Figure 9-5 Generating email OTP…………..………….……………………………...…..36

Figure 9-6 Welcome page….……………………..…………………………………….….37

Figure 9-7 Database page ……………………...…………………………………..…….37

