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Features of Python Sets \?

e Sets are a mutable collection of unique values

* Values are unordered

* Does not support indexing

* Highly useful to efficiently remove duplicate values from a list or tuple

* Perform common math operations like unions and intersections
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Set Creation and Initialization \?

To declare a set, type a sequence of items separated by commas, inside curly braces { }

and assign it to a variable

Also by using set() built in function

contain values of different types

A set is mutable, but may not contain items like a list, set, or dictionary.
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Set Creation and Initialization \?

s1={1,2.0,'three'}

print(sl) #{1, 2.0, 'three'} s1={1,2.0, three’}
sl

11, 2.8, "three'}
s2=set()

s2=set()

[ ! ! i ype(s2
print(type(s2)) # <class 'set'> print(type(s2))

<class "set':

# sets from Lits

# sets from lits s = set(['Python', 'sets', 'are', 'mutable’])
s

s3= Set(['Python'r lSEtS‘, 'are'; 'mutable']) 1'Python', 'are', 'mutable', 'sets'}

print(s3) #{'Python’, 'are’, 'mutable’, ‘sets'}
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Imp points on sets \?

* since sets do not support indexing, they cannot be sliced
s[:]

* Because a setisn’t indexed, can’t delete an element using its index.

# cannot contain duplicate elements. ;i?;“ig;"" duplicate elements.
s3={3,2,1,2} s3

print(s3) # {1, 2, 3} {1, 2, 3}

# Accessing a Set in Python ;ﬁﬁﬁ?ﬂ;ﬁ;;” Py thon
s1={1,2.0,'three'} s1

print(s1) # {1, 2.0, 'three'} {1, 2.8, "three'}
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Adding elements \?

Adding elements can ne done in two ways. 1. add() 2. update()

To add or remove values from a set, Initialize it first

To add single element using the add() method and multiple elements using the update() method.

update() : can take tuples, lists, strings or other sets as its argument

(duplicates are avoided)
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Adding elements

s4 ={3,2,1,4,4,6,5}
print(s4) #1{1, 2, 3, 4,5, 6}

s4.add(3.5)
print(s4) #{1,2,3,3.5,4,5, 6}

s4.add(4)
print(s4) #{1, 2, 3, 3.5, 4, 5, 6}

s4.update([7,8],{1,2,9})
print(s4) #{1,2,3,3.5,4,5,6, 7, 8, 9}

{1,

1,

1,

1,

s4 = {3,2,1,4,4,6,5}
print(s4

2, 3, 4, 5, 6}
s4.add(3.5)

sd

2, 3, 3.5, 4, 5, 6}
sd4.add(4)

sd

2, 3, 3.5, 4, 5, 6}

sd . update([7,8],11,2,9})
sd

2, 3, 3.5,4,5,6, 7,8, 9}
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Removing elements \?

 Toremove an element from set 1.remove() 2 discard() 3 pop() 4 clear()

e Difference 1. remove() 2 discard()

- while using discard() if the item does not exist in the set, it remains unchanged

- remove() will raise an error in such condition.

 pop() : Remove and return an arbitrary value from a set

e clear(): remove all values from a set
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Removing elements \ﬁ

s4 = {3,2,1,4,4,6,5}
2 sd.discard(3)

s4=1{3,2,1,4,4,6,5} 3 print(s4)
s4.discard(3) {1, 2, 4, 5, 6}
print(54) 1 #s4.remove(18)

2 | #s4

s4.remove(6)

sd.remove(6)

print(s4) 2 i y=a
{1, 2, 4, 5}
s4.pop()
print(s4)
sd . pop()
s4.clear() 0 print(s4)
print(s4) {2, 4, 5, 6}
sd.clear()
2 print{s4)
set()
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Iterating over set using for loop

ds = {'Python’, 'R’, 'SQL', 'Tableau’, 'SAS','ML','DL"}
for skillset in ds:

1 ds = {"Python’, "R*, "SQL’, 'Tableau', 'SAS','ML','DL"}
print(Skillset) 2 for skillset in ds:
3 nrint(skillset)

DL

SQL

SAS
Tableau
ML
Python
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Removing duplicates \?

* Use a set to remove duplicates from a list.

Removing duplicates from list

print(list(set([1,2,3,4,5,6,7,8,9,1,2,3,4]))) print(list(set([1,2,3,4,5,6,7,8,9,1,2,3,4])))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
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Removing duplicates \?

* Use a set to remove duplicates from a list.

Removing duplicates from list

print(list(set([1,2,3,4,5,6,7,8,9,1,2,3,4]))) print(list(set([1,2,3,4,5,6,7,8,9,1,2,3,4])))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
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Sets Math Operations

1 setl,set2={1,2,3},1{3,4,5}
2 setl.union(set2)

i1, 2, 3, 4, 5}

1 set?_intersection{setl)

13}

1 setl.intersection{set2)

13}

1 setl.difference(set2)

i1, 2}

1 set?._difference(setl)

14, 5}

1 ketl.symmetric_diFFEPEHCE(5et2}

i1, 2, 4, 5}
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Set comprehension \?

* Aset comprehension is like a list comprehension

returns a set

s3 = {s for s in range(11) if s % 2}

print(s3)
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Built-In functions \%

= The Python core library has three methods called

* enumerate()

* zip()

* map()
e filter()

* sorted()

* reduce()
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enumerate() \%

An enumerator built-in-function adds a counter of iterable numbers to the provided data structure of integers,

characters or strings and many more.

= The data structure might be any list, tuple, dictionary or sets.

= |f the counter is not provided by the user, then it starts from O by default.

= Based on the number provided the enumerator function iterates.

= Syntax: enumerate(iterable, start)

= The return type of an enumerate function is an object type.

= So the enumerate function returns an object by adding the iterating counter value to it.

= You can also convert the enumerator object into a list(), tuple(), set() and many more.
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4

enumerate
1 programmming = ["Python™, "Programmming”, "Is", "Fun™]
2 print(type(programmming))
A enum = enumerate(programmming)
5 print(type(enum))

#Converting to a list
print(list(enum))

0O =

<class 'list'>
<class 'enumerate’>
[(6, "Python'), (1, 'Programmming’), (2, 'Is'), (3, "Fun')]




zip() built-in function \?

e zip() : function take iterables (can be zero or more), makes iterator that aggregates elements based on the

iterables passed, and returns an iterator of tuples.

zip(*iterables)

* The zip() function returns an iterator of tuples based on the iterable object.

name = ["Akshay", "Dravid", "Sachin"]
name = ["Akshay"”, "Dravid”, "Sachin"”]
roll_no =[10, 20, 30] roll no = [18, 20, 30]
marks = [90, 88, 75] marks = (96, 88, 7]
mapped = zip(name, roll no, marks}
mapped = zip(name, roll_no, marks) print(list(mapped))
[('Akshay', 18, 9@), ('Dravid', 2o, 88), ('sachin', 38, 75)]

print(list(mapped))
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map() J

= The map() function expects two arguments: a function and a list.

= |t takes that function and applies it on every item of the list and returns the modified list.

# Square each item of the list Ist=[1,2,3,4,5,6]
def square(x): square = map(lambda x: x*2, Ist)
return x*2 (]
print(list(square))
Ist = [1; 2; 3; 4; 5]

_ 1st = [1, 2, 3, 4, 5, 6]
newlst = map(square, Ist) square = map(lambda x: x*2, 1lst)
print(list(newlst)) LR LSS BIECRE

[2, 4, 6, 8, 18, 12]
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filter() \?

« filter() function filters the given iterable with the help of a function that tests each element in

the iterable to be true or not.

filter(fun, Iter)

* fun: function that tests if each element of a sequence true or not.

* |ter: Iterable which needs to be filtered.

List, [m, n, p]

Condition, c( ) New list, [m, n]

if (m == condition)

© Replication or other unauthorized use of this material is prohibited



filter()

 Function to filter out vowels from list

alphabets - [lal Ibl |d| | | I’ IJ|’ 1 ]

def filterVowels(alphabet):
Vowels - [l 1 I 1 |4 | 1 | 'u ]

if(alphabet in vowels):
return True

else:
return False

filteredVowels = filter(filterVowels, alphabets)
print('The filtered vowels are:')

for vowel in filteredVowels:
print(vowel,end="")

Elphabets — [IalJ Ibl-‘ Ile IEI-‘ Ij-lJ Ijl-‘ Il;:ll]

def fllterVDwel5(alphabet}
vowels = ['a", 'e', "i", 'o', 'u']

if(alphabet in vowels):
return True

else:
return False

filteredVowels = filter(filterVowels, alphabets)

print('The filtered vowels are:")
for vowel in filteredVowels:
print(vowel,end=" ")

The filtered wvowels are:
aeio
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filter()

= |t takes a function and applies it to each item in the list to create a new list with only those items

that cause the function to return True.

def checkAge(age):
if age > 18:
return True
else:
return False

Ist =[10,14,18,22,24]
adults = filter(checkAge, Ist)
print(list(adults))

age =[10,14,18,22,24]
adults = filter(lambda x: x > 18, age)

print(list(adults))

age = [10,14,18,22,24]
adults = filter(lambda x: x > 18, age)
print(list(adults))

[22, 24]
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using built-in function sorted()

names = ['Guido van Rossum’, 'Bjarne Stroustrup', 'James Gosling']

print(sorted(names, key=lambda name: name.split()[-1])))

1 names = ['Guido van Rossum', 'Bjarne Stroustrup’ , "James Gosling']

print(sorted{names, key= lambda name: name.split{)[-1]))

[ "James Gosling', 'Guido van Rossum', 'Bjarne Stroustrup’]
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reduce() \?

= The reduce(fun,seq) function is used to apply a particular function passed in its argument to all

of the list elements mentioned in the sequence.

=  This function is defined in “functools” module.

from functools import reduce _
from functools import reduce

reduce(lambda x,y: x+y, [1,2,3,4]) reduce({lambda x,y: x+vy, [1,2,3,4])
18
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