4

‘-‘sr;&“'" 4,-4-,; :\"‘/i;@

ity o ExcEY

Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

Learning Objectives.

Python Sets, Built in Functions
Part 1, Session 9, 7 Oct 22

Dr N V Ganapathi Raju
Professor and HOD of IT
Gokaraju Rangaraju Institute of Eng and Tech

© Replication or other unauthorized use of this material is prohibited

Features of Python Sets \?

e Sets are a mutable collection of unique values

* Values are unordered

* Does not support indexing

* Highly useful to efficiently remove duplicate values from a list or tuple

* Perform common math operations like unions and intersections

© Replication or other unauthorized use of this material is prohibited

Set Creation and Initialization \?

To declare a set, type a sequence of items separated by commas, inside curly braces { }

and assign it to a variable

Also by using set() built in function

contain values of different types

A set is mutable, but may not contain items like a list, set, or dictionary.

© Replication or other unauthorized use of this material is prohibited

Set Creation and Initialization \?

s1={1,2.0,'three'}

print(sl) #{1, 2.0, 'three'} s1={1,2.0, three’}
sl

11, 2.8, "three'}
s2=set()

s2=set()

[! ! i ype(s2
print(type(s2)) # <class 'set'> print(type(s2))

<class "set':

sets from Lits

sets from lits s = set(['Python', 'sets', 'are', 'mutable’])
s

s3= Set(['Python'r lSEtS‘, 'are'; 'mutable']) 1'Python', 'are', 'mutable', 'sets'}

print(s3) #{'Python’, 'are’, 'mutable’, ‘sets'}

© Replication or other unauthorized use of this material is prohibited

Imp points on sets \?

* since sets do not support indexing, they cannot be sliced
s[:]

* Because a setisn’t indexed, can’t delete an element using its index.

cannot contain duplicate elements. ;i?;“ig;"" duplicate elements.
s3={3,2,1,2} s3

print(s3) # {1, 2, 3} {1, 2, 3}

Accessing a Set in Python ;ﬁﬁﬁ?ﬂ;ﬁ;;” Py thon
s1={1,2.0,'three'} s1

print(s1) # {1, 2.0, 'three'} {1, 2.8, "three'}

© Replication or other unauthorized use of this material is prohibited

Adding elements \?

Adding elements can ne done in two ways. 1. add() 2. update()

To add or remove values from a set, Initialize it first

To add single element using the add() method and multiple elements using the update() method.

update() : can take tuples, lists, strings or other sets as its argument

(duplicates are avoided)

© Replication or other unauthorized use of this material is prohibited

Adding elements

s4 ={3,2,1,4,4,6,5}
print(s4) #1{1, 2, 3, 4,5, 6}

s4.add(3.5)
print(s4) #{1,2,3,3.5,4,5, 6}

s4.add(4)
print(s4) #{1, 2, 3, 3.5, 4, 5, 6}

s4.update([7,8],{1,2,9})
print(s4) #{1,2,3,3.5,4,5,6, 7, 8, 9}

{1,

1,

1,

1,

s4 = {3,2,1,4,4,6,5}
print(s4

2, 3, 4, 5, 6}
s4.add(3.5)

sd

2, 3, 3.5, 4, 5, 6}
sd4.add(4)

sd

2, 3, 3.5, 4, 5, 6}

sd . update([7,8],11,2,9})
sd

2, 3, 3.5,4,5,6, 7,8, 9}

© Replication or other unauthorized use of this material is prohibited

Removing elements \?

 Toremove an element from set 1.remove() 2 discard() 3 pop() 4 clear()

e Difference 1. remove() 2 discard()

- while using discard() if the item does not exist in the set, it remains unchanged

- remove() will raise an error in such condition.

 pop() : Remove and return an arbitrary value from a set

e clear(): remove all values from a set

© Replication or other unauthorized use of this material is prohibited

Removing elements \ﬁ

s4 = {3,2,1,4,4,6,5}
2 sd.discard(3)

s4=1{3,2,1,4,4,6,5} 3 print(s4)
s4.discard(3) {1, 2, 4, 5, 6}
print(54) 1 #s4.remove(18)

2 | #s4

s4.remove(6)

sd.remove(6)

print(s4) 2 i y=a
{1, 2, 4, 5}
s4.pop()
print(s4)
sd . pop()
s4.clear() 0 print(s4)
print(s4) {2, 4, 5, 6}
sd.clear()
2 print{s4)
set()

© Replication or other unauthorized use of this material is prohibited

Iterating over set using for loop

ds = {'Python’, 'R’, 'SQL', 'Tableau’, 'SAS','ML','DL"}
for skillset in ds:

1 ds = {"Python’, "R*, "SQL’, 'Tableau', 'SAS','ML','DL"}
print(Skillset) 2 for skillset in ds:
3 nrint(skillset)

DL

SQL

SAS
Tableau
ML
Python

© Replication or other unauthorized use of this material is prohibited

Removing duplicates \?

* Use a set to remove duplicates from a list.

Removing duplicates from list

print(list(set([1,2,3,4,5,6,7,8,9,1,2,3,4]))) print(list(set([1,2,3,4,5,6,7,8,9,1,2,3,4])))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

© Replication or other unauthorized use of this material is prohibited

Removing duplicates \?

* Use a set to remove duplicates from a list.

Removing duplicates from list

print(list(set([1,2,3,4,5,6,7,8,9,1,2,3,4]))) print(list(set([1,2,3,4,5,6,7,8,9,1,2,3,4])))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

© Replication or other unauthorized use of this material is prohibited

Sets Math Operations

1 setl,set2={1,2,3},1{3,4,5}
2 setl.union(set2)

i1, 2, 3, 4, 5}

1 set?_intersection{setl)

13}

1 setl.intersection{set2)

13}

1 setl.difference(set2)

i1, 2}

1 set?._difference(setl)

14, 5}

1 ketl.symmetric_diFFEPEHCE(5et2}

i1, 2, 4, 5}

© Replication or other unauthorized use of this material is prohibited

Set comprehension \?

* Aset comprehension is like a list comprehension

returns a set

s3 = {s for s in range(11) if s % 2}

print(s3)

© Replication or other unauthorized use of this material is prohibited

Built-In functions \%

= The Python core library has three methods called

* enumerate()

* zip()

* map()
e filter()

* sorted()

* reduce()

© Replication or other unauthorized use of this material is prohibited

enumerate() \%

An enumerator built-in-function adds a counter of iterable numbers to the provided data structure of integers,

characters or strings and many more.

= The data structure might be any list, tuple, dictionary or sets.

= |f the counter is not provided by the user, then it starts from O by default.

= Based on the number provided the enumerator function iterates.

= Syntax: enumerate(iterable, start)

= The return type of an enumerate function is an object type.

= So the enumerate function returns an object by adding the iterating counter value to it.

= You can also convert the enumerator object into a list(), tuple(), set() and many more.

© Replication or other unauthorized use of this material is prohibited

4

enumerate
1 programmming = ["Python™, "Programmming”, "Is", "Fun™]
2 print(type(programmming))
A enum = enumerate(programmming)
5 print(type(enum))

#Converting to a list
print(list(enum))

0O =

<class 'list'>
<class 'enumerate’>
[(6, "Python'), (1, 'Programmming’), (2, 'Is'), (3, "Fun')]

zip() built-in function \?

e zip() : function take iterables (can be zero or more), makes iterator that aggregates elements based on the

iterables passed, and returns an iterator of tuples.

zip(*iterables)

* The zip() function returns an iterator of tuples based on the iterable object.

name = ["Akshay", "Dravid", "Sachin"]
name = ["Akshay"”, "Dravid”, "Sachin"”]
roll_no =[10, 20, 30] roll no = [18, 20, 30]
marks = [90, 88, 75] marks = (96, 88, 7]
mapped = zip(name, roll no, marks}
mapped = zip(name, roll_no, marks) print(list(mapped))
[('Akshay', 18, 9@), ('Dravid', 2o, 88), ('sachin', 38, 75)]

print(list(mapped))

© Replication or other unauthorized use of this material is prohibited

map() J

= The map() function expects two arguments: a function and a list.

= |t takes that function and applies it on every item of the list and returns the modified list.

Square each item of the list Ist=[1,2,3,4,5,6]
def square(x): square = map(lambda x: x*2, Ist)
return x*2 (]
print(list(square))
Ist = [1; 2; 3; 4; 5]

_ 1st = [1, 2, 3, 4, 5, 6]
newlst = map(square, Ist) square = map(lambda x: x*2, 1lst)
print(list(newlst)) LR LSS BIECRE

[2, 4, 6, 8, 18, 12]

© Replication or other unauthorized use of this material is prohibited

filter() \?

« filter() function filters the given iterable with the help of a function that tests each element in

the iterable to be true or not.

filter(fun, Iter)

* fun: function that tests if each element of a sequence true or not.

* |ter: Iterable which needs to be filtered.

List, [m, n, p]

Condition, c() New list, [m, n]

if (m == condition)

© Replication or other unauthorized use of this material is prohibited

filter()

 Function to filter out vowels from list

alphabets - [lal Ibl |d| | | I’ IJ|’ 1]

def filterVowels(alphabet):
Vowels - [l 1 I 1 |4 | 1 | 'u]

if(alphabet in vowels):
return True

else:
return False

filteredVowels = filter(filterVowels, alphabets)
print('The filtered vowels are:')

for vowel in filteredVowels:
print(vowel,end="")

Elphabets — [IalJ Ibl-‘ Ile IEI-‘ Ij-lJ Ijl-‘ Il;:ll]

def fllterVDwel5(alphabet}
vowels = ['a", 'e', "i", 'o', 'u']

if(alphabet in vowels):
return True

else:
return False

filteredVowels = filter(filterVowels, alphabets)

print('The filtered vowels are:")
for vowel in filteredVowels:
print(vowel,end=" ")

The filtered wvowels are:
aeio

© Replication or other unauthorized use of this material is prohibited

filter()

= |t takes a function and applies it to each item in the list to create a new list with only those items

that cause the function to return True.

def checkAge(age):
if age > 18:
return True
else:
return False

Ist =[10,14,18,22,24]
adults = filter(checkAge, Ist)
print(list(adults))

age =[10,14,18,22,24]
adults = filter(lambda x: x > 18, age)

print(list(adults))

age = [10,14,18,22,24]
adults = filter(lambda x: x > 18, age)
print(list(adults))

[22, 24]

© Replication or other unauthorized use of this material is prohibited

using built-in function sorted()

names = ['Guido van Rossum’, 'Bjarne Stroustrup', 'James Gosling']

print(sorted(names, key=lambda name: name.split()[-1])))

1 names = ['Guido van Rossum', 'Bjarne Stroustrup’ , "James Gosling']

print(sorted{names, key= lambda name: name.split{)[-1]))

["James Gosling', 'Guido van Rossum', 'Bjarne Stroustrup’]

© Replication or other unauthorized use of this material is prohibited

reduce() \?

= The reduce(fun,seq) function is used to apply a particular function passed in its argument to all

of the list elements mentioned in the sequence.

= This function is defined in “functools” module.

from functools import reduce _
from functools import reduce

reduce(lambda x,y: x+y, [1,2,3,4]) reduce({lambda x,y: x+vy, [1,2,3,4])
18

© Replication or other unauthorized use of this material is prohibited

