i) &)
. T s -
@f)i? Fifyy '-!.;"t{é:hé'
Ty g I-TKCE“\-

Jawaharlal Nehru Technological University Hyderabad

SCDE
Kukatpally, Hyderabad - 500 085, Telangana, India

Object Oriented Programming using Python part 2

Session 13, 30 May 23

Dr N V Ganapathi Raju
Professor.and HOD of IT
Gokaraju Rangaraju Institute of Eng and Tech

© Replication or other unauthorized use of this material is prohibited

Public, Private and Protected members

= QObject-oriented languages, like C++ and Java, use various keywords to
control and restrict the resource usage of a class, using keywords like

public, private and protected .

= Python has a different way of providing the functionality of these access

modifiers.

©Replication or other unauthorized use of this material is prohibited

Public Keyword

= public members of a class are available to everyone.

= So they can be accessed from outside the class and also by other classes too.

class employee:
def __init__ (self, name, sal):

N . . Sachin
self.name=name #Pl.,lbllc Ajctnbutes 10000
self.salary=sal # Public Attributes
_ . . 20000
el=employee("Sachin",10000) Sachin
print(el.name)
print(el.salary)
Note:
print() * All members of a class are by default public in Python.
el.salary=20000 * These members can be accessed outside of the class,
print(el.salary) and their values can be modified too.

print(el.name)

© Replication or other unauthorized use of this material is prohibited

Protected Keyword

= protected members of a class can be accessed by other members within the class and are also

available to their subclasses.
= No other entity can access these members.
= |norder to do so, they can inherit the parent class.

= Python has a unigue convention to make a member protected: Add a prefix _ (single

underscore).

= This prevents its usage by outside entities unless it is a subclass.

© Replication or other unauthorized use of this material is prohibited

Protected Keyword

class employee:
def __init__ (self, name, sal):

self._ name=name # protected attribute Sachin
self._salary=sal # protected attribute 10000
el=employee("Sachin", 10000) Sourab
print(el._name) 20000

print(el. salary)

print()

el. salary=20000
el. name="Sourab"
print(el._name)
print(el. salary)

© Replication or other unauthorized use of this material is prohibited

Private Keyword

= The private members of a class are only accessible within the class.

= |n Python, a private member can be defined by using a prefix __ (double

underscore).

= Every member with a double underscore will be changed to

_object._class__variable.

© Replication or other unauthorized use of this material is prohibited

Private Keyword

class employee:
def __init__ (self, name, sal):
self. __name=name # private attribute
self. _salary=sal # private attribute

10000
#el=employee("Sachin",10000) Sachin
#print(el._ salary)

20000
el=employee("Sachin",10000) Sourab

print(el. employee__salary)
print(el. employee_ _name)

print()

el. employee__ salary=20000
el. employee_ _name="Sourab"
print(el._employee__salary)
print(el. employee_ _name)

© Replication or other unauthorized use of this material is prohibited

Accessing attributes using built-in functions

Instead of using the normal statements to access attributes, you can use the following

functions —

The getattr(obj, name|, default]) — to access the attribute of object.
= The hasattr(obj,name) - to check if an attribute exists or not.

= The setattr(obj,name,value) - to set an attribute. If attribute does not exist, then it would be

created.

= The delattr(obj, name) - to delete an attribute.

© Replication or other unauthorized use of this material is prohibited

Accessing attributes

print(hasattr(empl, 'salary')) # True

class Employee:
ploy print(hasattr(emp?2, 'salary')) # True

empCount =0

print(getattr(emp1, 'salary')) # returns 10000

def init (self, name, salary): ,
—init__{ V) print(getattr(emp2, 'salary')) # returns 20000

self.name = name
self.salary = salary

Employee.empCount += 1 setattr(emp1, 'salary’, 5000) # sets salary as 5000 for emp1

setattr(emp2, 'salary', 6000) # sets salary as 6000 for emp2

def displayCount(self):

orint ("Total Employee %d" % Employee.empCount) print(getattr(emp1l, 'salary')) # returns 5000

print(getattr(emp2, 'salary')) # returns 6000

def displayEmployee(self):

: n o) no
orint ("Name : " selfname, " Salary: " self.salary) print ("Total Employee %d" % Employee.empCount) #Total

Employee 2

empl = Employee("Sachin", 10000)

emp2 = Employee("Sourab", 20000) delattr(empl, 'salary') # deletes attribute salary

#delattr(emp?, 'salary')

empl.displayEmployee() # Name : Sachin, Salary: 10000

emp2.displayEmployee() # Name : Sourab, Salary: 20000 #print(getattr(empl, 'salary')) # raises error as AttributeError

© Replication or other unauthorized use of this material is prohibited

Built-In Class Attributes

class Employee: print ("Employee. doc_ :", Employee. doc_)
empCount = 0 print ("Employee. name__:", Employee. name_)
def __init_ (self, name, salary): print ("Employee. module__:", Employee. module)
self.name = name
self.salary = salary print ("Employee. _bases__:", Employee. bases)

Employee.empCount +=1
print ("Employee. dict_ :", Employee. dict_)

def displayCount(self):

print ("Total Employee %d" % Employee.empCount) Employee.__doc__: None
Employee. name__: Employee
Employee. module_ : main__
def displayEmponee(seIf): Employee. bases_:(<class 'object'>,)
prlnt ("Name : "’ Selfname' "’ Salary- "' Selfsalary) Employee._dict_: {'_module_': '_main_', 'empCount': 2, '_init_':

<function Employee.__init__ at 0x000000B0166B65E8>, 'displayCount': <function
Employee.displayCount at 0x000000B0166B6AF8>, 'displayEmployee': <function
empl = Employee("Sachin", 10000) Employee.displayEmployee at 0x000000BO166B6A68>, ' dict_ ': <attribute
emp2 = Employee("Sou rab", 20000) ' dict_ ' of 'Employee’ objects>,' weakref ': <attribute' weakref ' of
'Employee’ objects>,' doc__': None}

© Replication or other unauthorized use of this material is prohibited

Destroying Objects (Garbage Collection)

= Python deletes unneeded objects (built-in types or class instances) automatically to free the

memory space.

= The process by which Python periodically reclaims blocks of memory that no longer are in use is

termed as Garbage Collection.

= Aclass can implement the special method __del (), called a destructor, that is invoked when

the instance is about to be destroyed.

= This method might be used to clean up any non-memory resources used by an instance.

© Replication or other unauthorized use of this material is prohibited

Destructor

class Addition:

def __init_ (self, a, b):
selfa=a
selfb=b
print ("In Constrictor")

def add(self):
print(self.a + self.b)

def __del__(self):

class_ name=self. class . name_

print (class_name, "destroyed")
add_obj = Addition(3,4)
add_obj.add()

del add_obj

In Constrictor

7

Addition destroyed

© Replication or other unauthorized use of this material is prohibited

Python Bank Account class

class Account:

def __init__ (self, holder, number, balance,credit_line=1500): acc = Account("ABC",100,10000)
self.Holder = holder
self. Number = number acc2 = Account("XYZ",101,20000)
self.Balance = balance
self.CreditLine = credit_line acc.transfer(acc2,1000)

print(acc.balance())
def balance(self):
return self.Balance print(acc2.balance())

def transfer(self, target, amount):
if(self.Balance - amount < -self.CreditLine):
coverage insufficient
return False
else:
self.Balance -= amount
target.Balance += amount
return True

9000
21000

© Replication or other unauthorized use of this material is prohibited

Problem Statement: Shopping cart Application

Write a class, Item that represents an item for sale. It should have the following:

= Fields representing the name and price of the item e A constructor that sets those fields,

= A _str_ () method that returns a string containing the item name and price, with the price formatted to exactly 2 decimal places

Test the class by creating a new item object and printing it out.
Write a class, ShoppingCart that might be used in an online store. It should have the following:
= Alist of Item objects that represents the items in the shopping cart
= A constructor that creates an empty list of items (the constructor should take no arguments except self)
= A method called add() that takes a name and a price and adds an Item object with that name and price to the shopping cart
= A method called total() that takes no arguments and returns the total cost of the items in the cart .

= A method called remove_items() that takes an item name (a string) and removes any Item objects with that name from the

shopping cart. It shouldn’t return anything.

= Then test out the shopping cart as follows: (1) create a shopping cart; (2) add several items to it; (3) print the cart’s

total cost (using the total() method); (4) remove one of the items types; (5) print out the cart

© Replication or other unauthorized use of this material is prohibited

Shopping cart Application

class Item:

def __init__ (self, name, price): class ShoppingCart:
self.name = name def init_ (self):

self.price = price self.items = []

def __str__(self): def add(self, item):
return '{:s}, {:.2f} .format(self.name, self.price) self.items.append(item)

tem = Item('ltem1’, 12.40) def total(self):
#print(item)

return sum(item.price for item in self.items)

def remove_items(self, name):

cart = ShoppingCart() ltem1, 150.55 self.items = [item for item in self.items if item.name != name]

cart.add(ltem('ltem1', 150.55)) ltem?2. 200.75
cart.add(ltem('ltem2', 200.75)) Item3' 100.00 def _ str_ (self):

cart.add(Item('ltem3', 100.00)) return '\n'.join(str(item) for item in self.items)
print(cart) 300.75
cart.remove_items('ltem1’) IterT.12 200.75

print(cart.total()) ltem3, 100.00
print(cart)

©Replication or other unauthorized use of this material is prohibited

	Default Section
	Slide 1
	Slide 2: Public , Private and Protected members
	Slide 3: Public Keyword
	Slide 4: Protected Keyword
	Slide 5: Protected Keyword
	Slide 6: Private Keyword
	Slide 7: Private Keyword
	Slide 8: Accessing attributes using built-in functions
	Slide 9: Accessing attributes
	Slide 11: Built-In Class Attributes
	Slide 12: Destroying Objects (Garbage Collection)
	Slide 13: Destructor
	Slide 14: Python Bank Account class
	Slide 15: Problem Statement: Shopping cart Application
	Slide 16: Shopping cart Application

