
Jawaharlal Nehru Technological University Hyderabad
S C D E

Kukatpally, Hyderabad - 500 085, Telangana, India

Object Oriented Programming using Python part 2

Dr N V Ganapathi Raju
Professor and HOD of IT

Gokaraju Rangaraju Institute of Eng and Tech

Session 13 , 30 May 23



Public , Private and Protected members

▪ Object-oriented languages, like C++ and Java, use various keywords to 

control and restrict the resource usage of a class, using keywords like 

public, private and protected .

▪ Python has a different way of providing the functionality of these access 

modifiers.



Public Keyword

▪ public members of a class are available to everyone. 

▪ So they can be accessed from outside the class and also by other classes too.

class employee:
def __init__(self, name, sal):

self.name=name  #Public Attributes
self.salary=sal # Public Attributes

e1=employee("Sachin",10000)
print(e1.name)
print(e1.salary)

print()

e1.salary=20000
print(e1.salary)
print(e1.name)

Note: 
• All members of a class are by default public in Python. 

• These members can be accessed outside of the class, 
and their values can be modified too.

Sachin
10000

20000
Sachin



Protected Keyword

▪ protected members of a class can be accessed by other members within the class and are also 

available to their subclasses.

▪ No other entity can access these members. 

▪ In order to do so, they can inherit the parent class. 

▪ Python has a unique convention to make a member protected: Add a prefix _ (single 

underscore). 

▪ This prevents its usage by outside entities unless it is a subclass.



Protected Keyword

class employee:
def __init__(self, name, sal):

self._name=name  # protected attribute 
self._salary=sal # protected attribute

e1=employee("Sachin", 10000)
print(e1._name)
print(e1._salary)

print()

e1._salary=20000
e1._name="Sourab"
print(e1._name)
print(e1._salary)

Sachin
10000

Sourab
20000



Private Keyword

▪ The private members of a class are only accessible within the class. 

▪ In Python, a private member can be defined by using a prefix __ (double 

underscore).

▪ Every member with a double underscore will be changed to                   

_object._class__variable.



Private Keyword

class employee:
def __init__(self, name, sal):

self.__name=name  # private attribute 
self.__salary=sal # private attribute

#e1=employee("Sachin",10000)
#print(e1.__salary)

e1=employee("Sachin",10000)
print(e1._employee__salary)
print(e1._employee__name)

print()

e1._employee__salary=20000
e1._employee__name="Sourab"
print(e1._employee__salary)
print(e1._employee__name)

10000
Sachin

20000
Sourab



Accessing attributes using built-in functions

Instead of using the normal statements to access attributes, you can use the following 

functions −

▪ The getattr(obj, name[, default]) − to access the attribute of object.

▪ The hasattr(obj,name) − to check if an attribute exists or not.

▪ The setattr(obj,name,value) − to set an attribute. If attribute does not exist, then it would be 

created.

▪ The delattr(obj, name) − to delete an attribute.



Accessing attributes
class Employee:

empCount = 0

def __init__(self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1

def displayCount(self):
print ("Total Employee %d" % Employee.empCount)

def displayEmployee(self):
print ("Name : ", self.name,  ", Salary: ", self.salary)

emp1 = Employee("Sachin", 10000)
emp2 = Employee("Sourab", 20000)

emp1.displayEmployee()   # Name :  Sachin , Salary:  10000
emp2.displayEmployee()   # Name :  Sourab , Salary:  20000

print(hasattr(emp1, 'salary'))  # True
print(hasattr(emp2, 'salary'))  # True

print(getattr(emp1, 'salary'))  # returns 10000
print(getattr(emp2, 'salary'))  # returns 20000

setattr(emp1, 'salary', 5000) # sets salary as 5000 for emp1
setattr(emp2, 'salary', 6000) # sets salary as 6000 for emp2

print(getattr(emp1, 'salary')) # returns 5000
print(getattr(emp2, 'salary')) # returns 6000

print ("Total Employee %d" % Employee.empCount) #Total 
Employee 2

delattr(emp1, 'salary')  # deletes attribute salary
#delattr(emp2, 'salary')   

#print(getattr(emp1, 'salary')) # raises error as AttributeError’



Built-In Class Attributes

class Employee:

empCount = 0

def __init__(self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1

def displayCount(self):
print ("Total Employee %d" % Employee.empCount)

def displayEmployee(self):
print ("Name : ", self.name,  ", Salary: ", self.salary)

emp1 = Employee("Sachin", 10000)
emp2 = Employee("Sourab", 20000)

print ("Employee.__doc__:", Employee.__doc__)

print ("Employee.__name__:", Employee.__name__)

print ("Employee.__module__:", Employee.__module__)

print ("Employee.__bases__:", Employee.__bases__)

print ("Employee.__dict__:", Employee.__dict__ )

Employee.__doc__: None
Employee.__name__: Employee
Employee.__module__: __main__
Employee.__bases__: (<class 'object'>,)
Employee.__dict__: {'__module__': '__main__', 'empCount': 2, '__init__': 
<function Employee.__init__ at 0x000000B0166B65E8>, 'displayCount': <function 
Employee.displayCount at 0x000000B0166B6AF8>, 'displayEmployee': <function 
Employee.displayEmployee at 0x000000B0166B6A68>, '__dict__': <attribute 
'__dict__' of 'Employee' objects>, '__weakref__': <attribute '__weakref__' of 
'Employee' objects>, '__doc__': None}



Destroying Objects (Garbage Collection)

▪ Python deletes unneeded objects (built-in types or class instances) automatically to free the 

memory space. 

▪ The process by which Python periodically reclaims blocks of memory that no longer are in use is 

termed as Garbage Collection.

▪ A class can implement the special method __del__(), called a destructor, that is invoked when 

the instance is about to be destroyed. 

▪ This method might be used to clean up any non-memory resources used by an instance.



Destructor 
class Addition:

def __init__(self, a, b):
self.a = a
self.b = b
print ("In Constrictor")

def add(self):
print(self.a + self.b)

def __del__(self):
class_name = self.__class__.__name__
print (class_name, "destroyed")

add_obj = Addition(3,4)

add_obj.add()

del add_obj

In Constrictor
7
Addition destroyed



Python Bank Account class
class Account:

def __init__(self, holder, number, balance,credit_line=1500): 
self.Holder = holder 
self.Number = number 
self.Balance = balance
self.CreditLine = credit_line

def balance(self): 
return self.Balance

def transfer(self, target, amount):
if(self.Balance - amount < -self.CreditLine):

# coverage insufficient
return False  

else: 
self.Balance -= amount 
target.Balance += amount 
return True

acc = Account("ABC",100,10000)

acc2 = Account("XYZ",101,20000)

acc.transfer(acc2,1000)
print(acc.balance())

print(acc2.balance())

9000
21000



Problem Statement: Shopping cart Application
Write a class, Item that represents an item for sale. It should have the following: 

▪ Fields representing the name and price of the item • A constructor that sets those fields, 

▪ A __str__() method that returns a string containing the item name and price, with the price formatted to exactly 2 decimal places 

Test the class by creating a new item object and printing it out.

Write a class, ShoppingCart that might be used in an online store. It should have the following: 

▪ A list of Item objects that represents the items in the shopping cart 

▪ A constructor that creates an empty list of items (the constructor should take no arguments except self) 

▪ A method called add() that takes a name and a price and adds an Item object with that name and price to the shopping cart 

▪ A method called total() that takes no arguments and returns the total cost of the items in the cart .

▪ A method called remove_items() that takes an item name (a string) and removes any Item objects with that name from the 

shopping cart. It shouldn’t return anything. 

▪ Then test out the shopping cart as follows: (1) create a shopping cart; (2) add several items to it; (3) print the cart’s 

total cost (using the total() method); (4) remove one of the items types; (5) print out the cart



Shopping cart Application
class Item:

def __init__(self, name, price):
self.name = name
self.price = price

def __str__(self):
return '{:s}, {:.2f}'.format(self.name, self.price)

tem = Item('Item1', 12.40)
#print(item)

class ShoppingCart:
def __init__(self):

self.items = []

def add(self, item):
self.items.append(item)

def total(self):
return sum(item.price for item in self.items)

def remove_items(self, name):
self.items = [item for item in self.items if item.name != name]

def __str__(self):
return '\n'.join(str(item) for item in self.items)

cart = ShoppingCart()
cart.add(Item('Item1', 150.55))
cart.add(Item('Item2', 200.75))
cart.add(Item('Item3', 100.00))
print(cart)
cart.remove_items('Item1')
print(cart.total())
print(cart)

Item1, 150.55
Item2, 200.75
Item3, 100.00

300.75
Item2, 200.75
Item3, 100.00

Step 1
Step 2

Step 3


	Default Section
	Slide 1
	Slide 2: Public , Private and Protected members
	Slide 3: Public Keyword
	Slide 4: Protected Keyword
	Slide 5: Protected Keyword
	Slide 6: Private Keyword
	Slide 7: Private Keyword
	Slide 8: Accessing attributes using built-in functions
	Slide 9: Accessing attributes
	Slide 11: Built-In Class Attributes
	Slide 12: Destroying Objects (Garbage Collection)
	Slide 13: Destructor 
	Slide 14: Python Bank Account class
	Slide 15: Problem Statement: Shopping cart Application
	Slide 16: Shopping cart Application


