
PYTHON PROGRAMMING

Conditions and Loops
Session 2 , 4 May 2023

Dr N V Ganapathi Raju
Professor and HOD of IT

GRIET

5/4/2023 1

Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

DR N V G RAJU PYTHON PROGRAMMING @griet

Introduction to Branching and Looping
▪ Generally, Programs contain set of Statements.

▪ Set of statements, gets executed sequentially in the order in which they are written and appear.

▪ But, situations may arise where we may have to change the order of execution of statements

depending on specific conditions.

▪ This involves a kind of decision making from a set of logical conditions/tests.

▪ Decision structures is to evaluate one or multiple expressions/logical conditions, which return

TRUE or FALSE outcomes.

▪ We can then determine what actions the program should take by defining the statements to execute

when the outcome is TRUE or FALSE.

Branching Statements

▪ Python has three major decision making instructions—

if statement

if-else statement

if...elif...else statement

Branching: if statement
▪ The if statement is used to carry out a logical expression, returns Boolean.

▪ The expression in parentheses must produce a Boolean result

▪ At run time, the computer evaluates the expression as True/False

▪ If True, the computer executes Statement(s).

▪ If False, goes out of if condition

▪ if keyword and ends with a colon (:)

▪ In Python, the if block statements are determined through indentation and the first un-indented

statement marks the end.

if (expression) :
statement(s)

colon

indentation

Example on if statement
• If the expression returns True, prints statements.

Note:

• There is no limit on the number of statements that can appear in the body,

but there must be at least one.

• It is useful to have a body with no statements

• Use the pass statement, which does nothing.

x = 10
if (x >= 10):

print("x >= 10 ",x) x >=10

print("x >= 10 ", x)

expression is True

if...else... statement
• A second form of the if statement in which there are two possibilities and the condition

determines which one gets executed.

if (expression) :
statement(s) 1 ;

else:
statement(s) 2 ;

True

False

indentation

indentation

column

column

expres
sion

Statements 1Statements 2

expression is True expression is False

Programs on if...else...

x = 10

if x%2 == 0 :

print('x is even', x)

else :

print('x is odd', x)

• Program to Find If a Given Number Is Odd or Even

• Program to Find the Greater of Two Numbers

x, y=10,20

if (x > y):

print("x is big",x)

else:

print("y is big",y)

if…elif…else statement (multy-way control)

• When you need to choose from several possible alternatives, then an elif statement is

used along with an if statement.

If expression 1:
statement 1

elif expression 2:
statement 2

:
:
:

else:
statement last

If expression 1 is True, then statement_1 is executed.

If expression 1 is False and expression 2 is True, then statement 2 is executed.

If none of the expression is True, then statement last is executed.

Program using if…elif…else statement

x = int(input("enter first number:"))

y = int(input("enter second number:"))

if (x > y):

print("x > y")

elif (x < y):

print("x < y")

else:

print("x == y")

• Program to find whether a given number is greater than / less than / equal to another.

for loop

▪ Probably the most popular looping instruction.

▪ The for loop starts with for keyword and ends with a colon.

▪ The first item in the sequence gets assigned to the iteration variable iteration_variable.

iteration_variable can be any valid variable name. Then the statement block is executed.

▪ This process of assigning items from the sequence to the iteration_variable and then executing

the statement continues until all the items in the sequence are completed.

▪ Actually, the for loop is designed to do more complicated tasks - it can "browse" large collections

of data item by item.

for iteration_variable in sequence:

statement(s)

range()

▪ The range() type returns an immutable sequence of numbers between the given start integer to the stop integer.

▪ range() constructor has two forms of definition:

▪ range(stop)

▪ range(start, stop[, step])

start - integer starting from which the sequence of integers is to be returned

stop - integer before which the sequence of integers is to be returned. The range of integers end at stop - 1.

step (Optional) - integer value which determines the increment between each integer in the sequence

▪ range() returns an immutable sequence object of numbers depending upon the definitions used:

Example for loop with range()
for a in range (5):

print (a)

for a in range (6,10):

print (a)

for a in range (11,20,2):

print (a)

for loop with string

▪ Program to Iterate through Each Character in the String

for ch in “Python":

print(ch)

Example for loop

▪ Program : Sum of all first 10 Natural numbers

sum=0

for n in range(1,11):

sum+=n

print (sum)

Example for loop

▪ Program to Find the Sum of All Odd and Even Numbers

num = int(input("Enter a number: "))

even = 0

odd = 0

for i in range(num):

if i % 2 == 0:

even = even + i

else:

odd = odd + i

print(f"Sum of Even are {even} odd are {odd}")

while loop

▪ The while loop in Python is used to iterate over a block of code as long as the test expression

(condition) is true.

▪ Condition: We generally use this loop when we don't know the number of times to iterate beforehand.

while test_expression:

Body of while

Program to add natural # numbers up to

n = 10
sum = 0
i = 1

while i <= n:
sum = sum + i
i = i+1

print("The sum is", sum)

break , continue statements

▪ In Python, break and continue statements can alter the flow of a normal loop.

▪ Loops iterate over a block of code until the test expression is false, but sometimes we wish to terminate

the current iteration or even the whole loop without checking test expression.

▪ The break statement terminates the loop containing it.

▪ If the break statement is inside a nested loop (loop inside another loop), the break statement will

terminate the innermost loop.

▪ The continue statement is used to skip the rest of the code inside a loop for the current iteration only.

▪ Loop does not terminate but continues with the next iteration.

Example with break , continue statements
for i in range(1, 6):

if i == 3:

break

print("Inside the loop.", i)

print("Outside the loop.")

for i in range(1, 6):

if i == 3:

continue

print("Inside the loop.", i)

print("Outside the loop.")

else statement

▪ With the else statement we can run a block of code once when the

condition no longer is true:

i = 1

while i < 6:

print(i)

i += 1

else:

print("i is no longer less than 6")

for i in range(0, 10,2):

print(i, end=" ")

else:

print("\n No Break")

5/4/2023 20DR N V G RAJU PYTHON PROGRAMMING @griet

Single line if else statements
if condition:

value_when_true
else:

value_when_false

value_when_true if condition else value_when_false

• If condition returns True then value_when_true is returned

• If condition returns False then value_when_false is returned

	Slide 1
	Slide 2: Introduction to Branching and Looping
	Slide 3: Branching Statements
	Slide 4: Branching: if statement
	Slide 5: Example on if statement
	Slide 6: if...else... statement
	Slide 7: Programs on if...else...
	Slide 8: if…elif…else statement (multy-way control)
	Slide 9: Program using if…elif…else statement
	Slide 10: for loop
	Slide 11: range()
	Slide 12: Example for loop with range()
	Slide 13: for loop with string
	Slide 14: Example for loop
	Slide 15: Example for loop
	Slide 16: while loop
	Slide 17: break , continue statements
	Slide 18: Example with break , continue statements
	Slide 19: else statement
	Slide 20
	Slide 21: Single line if else statements

