
Jawaharlal Nehru Technological University Hyderabad
S C D E

Kukatpally, Hyderabad - 500 085, Telangana, India

Object Oriented Programming using Python part 3

Dr N V Ganapathi Raju
Professor and HOD of IT

Gokaraju Rangaraju Institute of Eng and Tech

Session 14 , 1 June 23

Introduction to Polymorphism

▪ Polymorphism is one of the important feature of Object-Oriented Programming (OOP).

▪ Polymorphism means that you can have multiple classes where each class implements the same

variables or methods in different ways.

▪ It refers to the use of a single type entity (method, operator or object) to represent different

types in different scenarios.

▪ A real-world example of polymorphism is suppose when if you are in classroom that time you behave like a

student, when you are in market at that time you behave like a customer, when you are at your home at that

time you behave like a son or daughter, such that same person is presented as having different behaviors.

Polymorphism in addition operator

▪ The + operator is used extensively in Python programs, have many usages.

▪ For integer data types, + operator is used to perform arithmetic addition operation.

▪ Similarly, for string data types, + operator is used to perform concatenation.

num1, num2 = 10,20

print(num1+num2) # 30

str1 = "Ten“

str2 = "Twenty“

print(str1+" "+str2) # Ten Twenty

• A single operator + has been used
to carry out different operations for
distinct data types.

Function Polymorphism

▪ There are some functions in Python which are compatible to run with multiple data types.

▪ One such function is the len() function. It can run with many data types in Python.

print(len("Conduira Online")) # 15

print(len(["Python", "Java", "C"])) # 3

print(len({"Organization": "Conduira", "Address": "Hyderabad"})) # 2

Note:

Data types such as string, list, tuple, set, and

dictionary can work with the len() function.

However, we can see that it returns specific

information about specific data types.

Class Polymorphism in Python

▪ We can use the concept of polymorphism while creating class methods as Python allows

different classes to have methods with the same name.

class Shark():
def swim(self):

print("The shark is swimming.")
def swim_backwards(self):

print("The shark cannot swim backwards but can sink backwards.")
def skeleton(self):

print("The shark's skeleton is made of cartilage.")

class Clownfish():
def swim(self):

print("The clownfish is swimming.")
def swim_backwards(self):

print("The clownfish can swim backwards.")
def skeleton(self):

print("The clownfish's skeleton is made of bone.")

sammy = Shark()
sammy.skeleton()

casey = Clownfish()
casey.skeleton()

The shark's skeleton is made of cartilage.

The clownfish's skeleton is made of bone.

Demonstrate Polymorphism

Shape

area()
perimeter()

Rectangle

area()
perimeter()

Circle

area()
perimeter()

Demonstrate Polymorphism

import math
class Shape:

def area(self):
pass

def perimeter(self):
pass

class Rectangle(Shape):
def __init__(self, width, height):

self.width = width
self.height = height

def area(self):
print(f"Area of Rectangle is {self.width * self.height}")

def perimeter(self):
print(f"Perimeter of Rectangle is {2 * (self.width + self.height)}")

Demonstrate Polymorphism

class Circle(Shape):
def __init__(self, radius):

self.radius = radius
def area(self):

print(f"Area of Circle is {math.pi * self.radius ** 2}")

def perimeter(self):
print(f"Perimeter of Circle is {2 * math.pi * self.radius}")

def shape_type(shape_obj):
shape_obj.area()
shape_obj.perimeter()

rectangle_obj = Rectangle(10, 20)
circle_obj = Circle(10)

for each_obj in [rectangle_obj, circle_obj]:
shape_type(each_obj)

Area of Rectangle is 200
Perimeter of Rectangle is 60
Area of Circle is 314.1592653589793
Perimeter of Circle is 62.83185307179586

Explanation

▪ Shape is the base class while Rectangle and Circle – are the derived classes.

▪ All these classes have common methods area() and perimeter() added to them but their

implementation is different as found in each class.

▪ Derived classes Rectangle and Circle have their own data attributes.

▪ Instance variables rectangle_obj and circle_obj are created for Rectangle and Circle classes

respectively.

▪ The clearest way to express polymorphism is through the function shape_type() – , which takes

any object and invokes the methods area() and perimeter() respectively.

Method Overriding

▪ Like in other programming languages, the child classes in Python also inherit methods

and attributes from the parent class.

▪ We can redefine certain methods and attributes specifically to fit the child class, which is

known as Method Overriding.

▪ Polymorphism allows us to access these overridden methods and attributes that have

the same name as the parent class.

Method Overriding

Shape
init(), area(), __str__(self)

Square
init(), area(), __str__(self)

Circle
init(), area(), __str__(self)

Method Overriding

from math import pi

class Shape:
def __init__(self, name):

self.name = name

def area(self):
pass

def __str__(self):
return self.name

class Square(Shape):
def __init__(self, length):

super().__init__("Square")
self.length = length

def area(self):
return self.length**2

Method Overriding

class Circle(Shape):
def __init__(self, radius):

super().__init__("Circle")
self.radius = radius

def area(self):
return pi*self.radius**2

a = Square(4)
b = Circle(7)
print(a)
print(a.area())
print(b)
print(b.area())

Square
16
Circle
153.93804002589985

The methods __str__(), which have not been overridden in the

child classes, are used from the parent class.

Python Data Model

Note:

▪ If we use + or * operator on a str object in Python, we must have noticed its different

behavior when compared to int or float objects.

print(1 + 2)

Concatenates the two strings
print(‘Hai ' + 'Conduira')

Gives the product
print(3 * 2)

Repeats the string
print('Conduira! ' * 3)

3

Hai Conduira

6

Conduira! Conduira! Conduira!

• We have observed that the same

built-in operator or function shows

different behavior for objects of

different classes.

• This is called operator overloading or

function overloading respectively.

Data Model

▪ Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations

between objects.

▪ Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may

think of it as the object’s address in memory.

▪ The ‘is’ operator compares the identity of two objects; the id() function returns an integer representing its identity.

▪ Data model as a description of Python as a framework. It formalizes the interfaces of the building blocks of the

language itself, such as sequences, iterators, functions, classes, context managers, and so on.

▪ While coding with any framework, you spend a lot of time implementing methods that are called by the framework.

The same happens when you leverage the Python data model. The Python interpreter invokes special methods to

perform basic object operations, often triggered by special syntax.

Python Data Model

Case Example:

▪ Suppose we have a class representing an online order having a cart (a list) and a customer (a str or instance of

another class which represents a customer).

▪ In such a case, it is quite natural to want to obtain the length of the cart list. Someone new to Python might

decide to implement a method called get_cart_len() in their class to do this. But we can configure the built-in

len() in such a way that it returns the length of the cart list when given our object.

▪ In another case, we might want to append something to the cart. Again, someone new to Python would think

of implementing a method called append_to_cart() that takes an item and appends it to the cart list. But you

can configure the + operator in such a way that it appends a new item to the cart.

Python Special (Magic) Methods

▪ Special methods have a naming convention, where the name starts with two underscores, followed by an

identifier and ends with another pair of underscores.

▪ Essentially, each built-in function or operator has a special method corresponding to it.

▪ For example, there’s __len__(), corresponding to len(), and __add__(), corresponding to the + operator.

▪ By default, most of the built-ins and operators will not work with objects of your classes. We must add the

corresponding special methods in our class definition to make your object compatible with built-ins and

operators.

▪ The behavior of the function or operator associated with it changes according to that defined in the

method. This is exactly what the Data Model helps you accomplish.

▪ When we calling len() on an object, Python handles the call as obj.__len__().

▪ When you use the [] operator on an iterable to obtain the value at an index, Python handles it as

itr.__getitem__(index), where itr is the iterable object and index is the index you want to obtain.

Internals of Operations Like len() and []

a = 'Conduira Online'
b = ['Conduira', 'Online']
print(len(a))

print(a.__len__())

print(b[0])

print(b.__getitem__(0))

15

15

Conduira

Conduira

• When you use the function or its
corresponding special method,
we get the same result.

Special methods of string object

▪ when we obtain the list of attributes and methods of a str object using dir(), we’ll see these

special methods in the list in addition to the usual methods available on str objects.

Python special methods

The special method names allow your objects to implement, support, and interact with basic language
constructs such as:

▪ Iteration

▪ Collections

▪ Attribute access

▪ Operator overloading

▪ Function and method invocation

▪ Object creation and destruction

▪ String representation and formatting

Operator Overloading

▪ Operator overloading in Python is the ability of a single operator to perform more than

one operation based on the class (type) of operands.

▪ For example, the + operator can be used to add two numbers, concatenate two strings or

merge two lists.

▪ This is possible because the + operator is overloaded with int and str classes.

▪ Similarly, we can define additional methods for these operators to extend their

functionality to various new classes and this process is called Operator overloading.

Giving a Length to Your Objects Using len()

▪ To change the behavior of len(), we need to define the __len__() special method in ourclass.

▪ Whenever we pass an object of your class to len(), our custom definition of __len__() will be

used to obtain the result.

class Order:
def __init__(self, cart, customer):

self.cart = list(cart)
self.customer = customer

def __len__(self):
return len(self.cart)

order = Order(['C', 'Java', 'Python'], 'Conduira Online')
print(len(order))
print(order.customer)

3
Conduira Online

Indexing and Slicing Your Objects Using []

▪ The [] operator is called the indexing operator and is used in various contexts in Python such as getting the

value at an index in sequences, getting the value associated with a key in dictionaries, or obtaining a part

of a sequence through slicing.

▪ We can change its behavior using the __getitem__() special method.

class Order:
def __init__(self, cart, customer):

self.cart = list(cart)
self.customer = customer

def __getitem__(self, key):
return self.cart[key]

order = Order(['C', 'Python', 'Java'], 'Conduira Online')

print(order[0]) # C

print(order[-1]) # Java

String Magic Methods

String Magic Methods Description

__str__(self) To get called by built-int str() method to return a string
representation of a type.

__hash__(self) To get called by built-int hash() method to return an integer.

__nonzero__(self) To get called by built-int bool() method to return True or False.

__dir__(self) To get called by built-int dir() method to return a list of
attributes of a class.

__sizeof__(self) To get called by built-int sys.getsizeof() method to return the
size of an object.

Attribute Magic Methods

Attribute Magic Methods Description

__getattr__(self, name) Is called when the accessing attribute of a class.

__setattr__(self, name, value) Is called when assigning a value to the attribute of a
class.

__delattr__(self, name) Is called when deleting an attribute of a class.

Operator Overloading and Magic Methods

Dynamic typed language

▪ x = 10

▪ x = “conduira online”

▪ x = 10.50

Duck Typing:

▪ if it walks like a duck and it quacks like a duck, then it must be a duck”

Duck Typing

▪ if it walks like a duck and it quacks like a duck, then it must be a duck”

▪ Duck typing is a concept related to dynamic typing, where the type or the class of an object is less

important than the methods it defines.

▪ Using duck typing you do not check types at all. Instead you check for the presence of a given method or

attribute.

▪ Duck Typing is a type system used in dynamic languages. For example, Python, Perl, Ruby, PHP, Javascript,

etc. where the type or the class of an object is less important than the method it defines.

▪ Using Duck Typing, we do not check types at all. Instead, we check for the presence of a given method or

attribute.

Duck Typing example

class Duck:
def quack(self):

print("Quaaaaaack!")
def feathers(self):

print("The duck has white and gray feathers.")

class Person:
def quack(self):

print("The person imitates a duck.")
def feathers(self):

print("The person takes a feather from the ground and shows it.")
def name(self):

print("John Smith")

def in_the_forest(obj):
obj.quack()
obj.feathers()

donald = Duck()
john = Person()
in_the_forest(donald)
in_the_forest(john)

Quaaaaaack!
The duck has white and gray feathers.
The person imitates a duck.
The person takes a feather from the ground and shows it.

Duck Typing example

class Anaconda:
def execute(self):

print("Compiling");
print("Running");

class Laptop:
def code(self,ide):

ide.execute()

ide = Anaconda()

lap1= Laptop()
lap1.code(ide)

Compiling
Running

▪ The special method corresponding to the + operator is the __add__() method.

▪ Adding a custom definition of __add__() changes the behavior of the operator.

▪ Example: implement the ability to append new items to shooping cart in the Order class using the operator.

Overloading + operator

class Order:
def __init__(self, cart, customer):

self.cart = list(cart)
self.customer = customer

def __add__(self, other):
new_cart = self.cart.copy()
new_cart.append(other)
return Order(new_cart, self.customer)

order = Order(['C', 'Java'], 'Conduira Online')

print((order + 'Python').cart) # New Order instance

print(order.cart) # Original instance unchanged

order = order + 'Python' # Changing the original instance
print(order.cart)

['C', 'Java', 'Python']
['C', 'Java']
['C', 'Java', 'Python']

Overloading bool()

▪ The bool() built-in can be used to obtain the truth value of an object.

▪ To define its behavior, you can use the __bool__() special method.

▪ The behavior defined will determine the truth value of an instance in all contexts that

require obtaining a truth value such as in if statements.

▪ For the Order class, an instance can be truthy if the length of the cart list is non-zero.

This can be used to check whether an order should be processed or not.

Overloading bool()

class Order:
def __init__(self, cart, customer):

self.cart = list(cart)
self.customer = customer

def __bool__(self):
return len(self.cart) > 0

order1 = Order(['Java', 'CPP', 'Python'], 'Conduira Online')
order2 = Order([], 'Conduira Offline')

print(bool(order1))

print(bool(order2))

for order in [order1, order2]:
if order:

print(f"{order.customer}'s order is processing...")
else:

print(f"Empty order for customer {order.customer}")

True

False

Conduira Online's order is processing...

Empty order for customer Conduira Offline

Case 1: Write a class called Course that has the following

▪ A field name that is the name of the course, a field capacity that is the maximum number of students allowed
in the course, and a list called student_IDs representing the students in the course by their ID numbers (stored
as strings).

▪ A constructor that takes the name of the course and capacity and sets those fields accordingly. The
constructor should also initialize student_IDs list to an empty list, but it should not take a list as a parameter.
It should only have the course name and capacity as parameters.

▪ A method called is_full() that takes no arguments and returns True or False based on whether or not the
course is full (i.e. if the number of students in the course is equal to or above the capacity).

▪ A method called add_student() that takes a student ID number and adds the student to the course by putting
their ID number into the list. If the student is already in the course, they must not be added to the list, and if
the course is full, the student must not be added to the course.

▪ Test the class by creating a Course object, adding several students to the class, and calling the is_full()

▪ method. Print out the value of the student_IDs field to make sure everything comes out as expected.

Case 2: RestaurantCheck

	Default Section
	Slide 1
	Slide 2: Introduction to Polymorphism
	Slide 3: Polymorphism in addition operator
	Slide 4: Function Polymorphism
	Slide 5: Class Polymorphism in Python
	Slide 6: Demonstrate Polymorphism
	Slide 7: Demonstrate Polymorphism
	Slide 8: Demonstrate Polymorphism
	Slide 9: Explanation
	Slide 10: Method Overriding
	Slide 11: Method Overriding
	Slide 12: Method Overriding
	Slide 13: Method Overriding
	Slide 14: Python Data Model
	Slide 15: Data Model
	Slide 16: Python Data Model
	Slide 17: Python Special (Magic) Methods
	Slide 18: Internals of Operations Like len() and []
	Slide 19: Special methods of string object
	Slide 20: Python special methods
	Slide 21: Operator Overloading
	Slide 22: Giving a Length to Your Objects Using len()
	Slide 23: Indexing and Slicing Your Objects Using []
	Slide 24: String Magic Methods
	Slide 25: Attribute Magic Methods
	Slide 26: Operator Overloading and Magic Methods
	Slide 27: Dynamic typed language
	Slide 28: Duck Typing
	Slide 29: Duck Typing example
	Slide 30: Duck Typing example
	Slide 31: Overloading + operator
	Slide 32: Overloading bool()
	Slide 33: Overloading bool()
	Slide 34: Case 1: Write a class called Course that has the following
	Slide 35: Case 2: RestaurantCheck

