
Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

Learning Objectives:

Python File Operations 

Session 11, 1 2 Oct 2022

Dr N V Ganapathi Raju
Professor and HOD of IT

Gokaraju Rangaraju Institute of Eng and Tech



Python File I/O

Persistence:

▪ Most of the programs are transient in the sense that they run for a short time and produce some 

output, but when they end, their data disappears. If you run the program again, it starts with a 

clean slate.

▪ Other programs are persistent: they run for a long time (or all the time); they keep at least some 

of their data in permanent storage (a hard drive, for example); and if they shut down and restart, 

they pick up where they left off.

▪ One of the simplest ways for programs to maintain their data is by reading and writing text files.



Creating, opening and closing text files

▪ All files must be opened first before they can be read from or written to using the Python’s built-in open()

▪ When a file is opened using open() function, it returns a file object called a file handler that provides 

methods for accessing the file.

file_handler = open(filename, mode)

▪ The mode can be "r" reading ,  "w"  writing  and  "a" appending purpose.

▪ The mode can be "r+" reading/writing ,  "w+"  reading/writing  and  "a+" reading/appending purpose.

▪ It is important to close the file once the processing is completed.            file_handler.close()

Returns file_handler
user defined

file_name is user defined

mode is parameter 



Read and Write Methods
▪ When you use the open() function a file object is created. 

Method Syntax Description

read() file_handler. read([size]) This method is used to read the contents of a file up to a size and
return it as a string.

readline() file_handler.readline() This method is used to read a single line in file.

write() file_handler.write(string) This method will write the contents of the string to the file,
returning the number of characters written.

tell() file_handler.tell() This method returns an integer giving the file handler’s current
position within the file, measured in bytes from the beginning of
the file.

seek() file_handler. seek(offset, 
from_what)

This method is used to change the file handler’s position. The
position is computed from adding offset to a reference point. The
reference point is selected by the from_what argument. A
from_what value of 0 measures from the beginning of the file, 1
uses the current file position, and 2 uses the end of the file as the
reference point.



Seek Operation Meaning

f.seek(0) Move file pointer to the beginning of a File

f.seek(5) Move file pointer five characters ahead from the beginning of a file.

f.seek(0, 2) Move file pointer to the end of a File

f.seek(5, 1) Move file pointer five characters ahead from the current position.

f.seek(-5, 1) Move file pointer five characters behind from the current position.

f.seek(-5, 2) Move file pointer in the reverse direction. Move it to the 5th character from the end of the file



Program for reading and writing data

print('----writing to file----')
obj=open("file.txt","w")  
obj.write("Hello Conduira")  
obj.close() 

print('----read from file----')
obj1=open("file.txt","r")  
s=obj1.read()  
print (s)
obj1.close() 

print('----read from file 5 chars----')
obj2=open("file.txt","r")  
s1=obj2.read(5)  
print (s1)
obj2.close() 



File attributes

▪ When the Python open() function is called, it returns a file object called a file handler. 

Attribute Description

file_handler.closed It returns a Boolean True if the file is closed or False otherwise.

file_handler.mode It returns the access mode with which the file was opened.

file_handler.name It returns the name of the file.

print('----file attributes----')

obj = open("file1.txt", "w")  

print  (obj.name)

print  (obj.mode)

print  (obj.closed)



Example with seek(), tell()

fo = open("file.txt", "r+")

str = fo.read(10);

print ("Read String is : ", str)

position = fo.tell();

print ("Current file position : ", position)

position = fo.seek(0, 0);

str = fo.read(10);

print ("Again read String is : ", str)

fo.close()



Handling exceptions with open() and close()

▪ If an exception occurs while performing some operation on the file, then the code exits without 

closing the file. 

▪ In order to overcome this problem, you should use a try-except-finally block to handle exceptions. 

try:
f = open("file.txt", "w")
f.write('Welcome to Conduira Online!')
print("file writing completed")
f.close()

except IOError:
print('ERROR in opening a file')

try:
f = open("file.txt", "r")
str = f.read()
print(str)
f.close()

except IOError:
print('ERROR in opening a file')



Using with statement

▪ The with statement automatically closes the file after executing its block of statements.

▪ In the syntax, the words with and as are keywords and the with keyword is followed by the open() function and ends 

with a colon

with open (file, mode) as file_handler:

Statement_1

Statement_2

...

Statement_N

• The as keyword acts like an alias and is 

used to assign the returning object from 

the open() function to a new variable 

file_handler. 

• The with statement creates a context 

manager and it will automatically close 

the file handler object



Program for reading and writing data 

with open('file1.txt', 'w') as f:

data = 'python is a prg lang used for data analytics'

f.write(data)

with open('file1.txt', 'r') as f:

data = f.read()

print(data)


