
Jawaharlal Nehru Technological University Hyderabad
S C D E

Kukatpally, Hyderabad - 500 085, Telangana, India

Iterators, Generators, Decorators

Session 10 , 23 May 23

Dr N V Ganapathi Raju
Professor and HOD of IT

Gokaraju Rangaraju Institute of Eng and Tech

Iterators and generators are used to implement custom iterable objects in python, and

decorators are used to modify the behavior of functions.

Iterables

• Iterables are objects that are capable of returning their members one at a time, generally will be

done using a for-loop.

• Objects like lists, tuples, sets, dictionaries, strings, etc. are called iterables. In short, anything you

can loop over is an iterable.

lst = ['C', 'Python', 'Java', 'CPP']

for i in lst:

print(i)

Collections-Counter

• A Counter is a dict subclass for counting hashable objects.

• It is a collection where elements are stored as dictionary keys and their counts are stored as

dictionary values.

• Counts are allowed to be any integer value including zero or negative counts.

• We should import Counter using the following statement

from collections import Counter

Creating counter objects

c1 = Counter() # a new, empty counter

c2 = Counter('abrakadabra') # a new counter from an iterable

c3 = Counter({'C': 4, 'Python': 6, 'Java': 4 }) # a new counter from a mapping

print(c1)

print(c2)

print(c3)

Counter object with strings

from collections import Counter

c = Counter(‘Pythonn')

print(c)

print(c['n'])

print(c['i'])

Creating Counter with List, Sentences

lst = [1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,2,5,6]

c = Counter(lst)

print(c)

Most common words

• Function : most_common([n])

• Returns a list of the most common elements with their counts.

The number of elements has to be specified as n.

If none is specified it returns the count of all the elements

Common patterns when using the Counter() object

c = Counter('abababccdcdcdef')

list unique elements
print(list(c))

convert to a set
print(set(c))

convert to a regular dictionary
print(dict(c))

total of all counts
print(sum(c.values()))

convert to a list like (elem, cnt
print(c.items())

print(c.most_common(2))

Mathematical operations with Counter

c1 = Counter (a=5,b=4, e=2)

c2 = Counter (c=3,d=2, e=1)

print(c1+c2) # add two counters together

print(c1-c2) # subtract (keeping only positive counts)

print(c1&c2) # intersection: min(c[x], d[x])

print(c1|c2) # union: max(c[x], d[x])

Iterators

• Iterators are objects that allow us to traverse through collection, return one element at a time.

• Iterator, implemented in constructs like for-loops, comprehensions, and python generators.

• An iterator keeps track of the current state of an iterable.

Iterator methods

• Python iterator object implement two special methods

__iter__() : returns the iterator object itself.

__next__() : must return the next item in the sequence.

On reaching the end, raise StopIteration exception

instead of using the __iter__() and __next__() methods, you can use the iter() and next() methods

• next() : to get the next element

• Iter() function (which in turn calls the__iter__()) returns an iterator from them.

Example for iterators

lst = ['C', 'Python', 'Java', 'CPP']

it = lst.__iter__()

it.__next__()

Example for iterators

lst = ['C', 'Python', 'Java', 'CPP']

iterator

it = iter(lst)

next values

print(next(it))

print(next(it))

print(next(it))

print(next(it))

Example for iterators

lst = ['C', 'Python', 'Java', 'CPP']

it = iter(lst)

while True:

this will execute till an error is raised

try:

val = next(it)

when we reach end of the list,

error is raised and we break out of the loop

except StopIteration:

break

print(val)

Generators

• Generator is a function that returns an object (iterator) which we can iterate over (one value at a

time).

Creating a generator functions:

• Define a normal function, but with a yield statement.

• If a function contains at least one yield statement, it becomes a generator function.

• a return statement terminates a function entirely,

• yield statement pauses the function saving all its states and later continues from there on successive calls.

Points to Remember

• Generator function contains one or more yield statements.

• When called, it returns an object (iterator) but does not start execution immediately.

• Methods like __iter__() and __next__() are implemented automatically. So we can iterate through the

items using next().

• Once the function yields, the function is paused and the control is transferred to the caller.

• Local variables and their states are remembered between successive calls.

• Finally, when the function terminates, StopIteration is raised automatically on further calls.

Example on generator

def my_gen():
n = 1
yield n

n += 1
yield n

no = my_gen()
print(no)
print(type(no))

next(no)

Example on generator

def gen_nos(x):

for i in range(x):

yield i

print(list(gen_nos(10)))

Generator Expressions

• A generator expression, much like list comprehension. The only difference is that

unlike a list comprehension, a generator expression is enclosed within parenthesis.

generator expression

mylist=[1,3,6,10]
a=(x**2 for x in mylist)
print(a)

print(next(a))

print(next(a))

Decorators

• In Python, functions are first-class objects. i.e. functions can be passed around and used

as arguments, just like any other object (string, int, float, list, and so on).

• decorators wrap a function, modifying its behavior.

• A decorator takes a function, extends it and returns. a function can return a function.

Case 1. Everything in Python is an object

Case 1. Different names can be bound to the same function object.

def fun1(str):
print(str)

fun1("Hai Data Science")

fun2 = fun1
del fun1

fun2("Hello Machine Learning")

Note: fun1 and fun2 refer same function object.

Case 2. Functions can be passed as arguments to another function

Case 2. Functions can be passed as arguments to another function.

def inc(x):
return x + 1

def dec(x):
return x - 1

def opr(func, x):
result = func(x)
return result

opr(inc,3) # 4

opr(dec,3) # 2

Case 3. A function can return another function

Case 3. A function can return another function.

def fun1():
def fun2():

print("Hello DS participants")
return fun2

ret_fun = fun1()

ret_fun()

Note: fun2() is a nested function which is defined and returned each time we call fun1().

Case 4: A nested function accessing non local variables

Case 4: A nested function accessing nonlocal variables

def print_msg(msg):

def show():
print(msg)

show()

print_msg("Hello DS Students")

Note: nested show() function was able to access the non-local msg variable of the enclosing function.

A function defined inside another function is called a nested function.
Nested functions can access variables of the enclosing scope.
In Python, these non-local variables are read-only by default.

Case 5: Python Closures

Case 5: Closures

def print_msg(msg):

def show():
print(msg)

return show

res = print_msg("Hello DS")

res()

del print_msg

res()

Note:
The print_msg() function was called with the string "Hello DS" and
the returned function was bound to the name res.

On calling res(), the message was still remembered although we
had already finished executing the print_msg() function.

This technique by which some data ("Hello DS) gets attached to the
code is called closure in Python.

This value in the enclosing scope is remembered even when the
variable goes out of scope or the function itself is removed from
the current namespace.

Case 6: Decorators
def decor(func):

def wrap():
print("*******************")
func()
print("*******************")

return wrap

def sayhello():
print("Hello Data Science")

newfunc=decor(sayhello)

newfunc()

	Default Section
	Slide 1
	Slide 2: Iterables

	Default Section
	Slide 3: Collections-Counter
	Slide 4: Creating counter objects
	Slide 5: Counter object with strings
	Slide 6: Creating Counter with List, Sentences
	Slide 7: Most common words
	Slide 8: Common patterns when using the Counter() object
	Slide 9: Mathematical operations with Counter
	Slide 10: Iterators
	Slide 11: Iterator methods
	Slide 12: Example for iterators
	Slide 13: Example for iterators
	Slide 14: Example for iterators
	Slide 15: Generators
	Slide 16: Points to Remember
	Slide 17: Example on generator
	Slide 18: Example on generator
	Slide 19: Generator Expressions
	Slide 20: Decorators
	Slide 21: Case 1. Everything in Python is an object
	Slide 22: Case 2. Functions can be passed as arguments to another function
	Slide 23: Case 3. A function can return another function
	Slide 24: Case 4: A nested function accessing non local variables
	Slide 25: Case 5: Python Closures
	Slide 26: Case 6: Decorators

