:"b: T (!?‘
it e

To XY

Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

Creating own modules
Session 6, 30 Sep 22

Dr N V Ganapathi Raju
Professor and HOD of IT
GRIET

© Replication or other unauthorized use of this material is prohibited

Custom Modules \?

A module is simply a file, where classes, functions and variables are defined.

Grouping similar code into a single file makes it easy to access.

Consider a module to be the same as a code library.

To create a module just save the code you want in a file with the file extension .py

Now we can access module using the import statement

© Replication or other unauthorized use of this material is prohibited

Kinds of import statements

1) Using import statement:

"tmport” statement can be used to import a module.

Syantax: import <file namel, file name? __file name(n)=""=
</file_namel =

2) Using from.. import statement:

from. . import statement 1s used to import particular attribute from a module.

In case vou do not want whole of the module to be imported then vou can use from import
statement.

syntax: from <module name> import <attributel attribute? attribute3__attributen=
=/attribute] attribute? attribute3___attributen™=</module _name>

3)To import whole module:

You can import whole of the module using "from, import *"

Syntax: from <module name> import *

</'module_name= authorized use of this material is prohibited

1%6‘
gy ey

Jawaharlal Nehru Technological University Hyderabad

‘»‘9-2:')-‘ ay.m: ‘:,\

Kukatpally, Hyderabad - 500 085, Telangana, India

Python Strings

Session 6, 30 Sep 22

Dr N V Ganapathi Raju
Professor and HOD of IT
GRIET

© Replication or other unauthorized use of this material is prohibited

Strings g

* String is a group of characters enclosed in single (‘) or double (")

PyStringObject {

value = “Hello” value = "Hello"

}

e Stringis a sequence, i.e. is an ordered collection of values

e Strings are immutable, i.e. We cannot change an existing string

© Replication or other unauthorized use of this material is prohibited

Accessing Strings \?

e Strings are stored as individual characters in a contiguous memory location

e Strings can be accessed from both the directions in forward and backward , one character at a time using [].

The expression in brackets, known as Index

Forward Indexing

LD 1 2 3 4 5

str P Y T H O N

-+
-6 -5 -4 -3 -2 -1 \
Backward Indexing

Forward Index: str[0]="P’, str[1]="Y"

Backward Index: str[-1]=‘N’, str[-2]="0" ...

© Replication or other unauthorized use of this material is prohibited

String — Immutable property \?

Once the string is created, you can’t change an existing string. i.e. immutable,

Example 1

Example 2

str1="Python Programming“

stri[7] =)

ERROR: 'str' object does not support item assignment

strl = "welcome"
id(strl) # 2381521555888
str2 = "Welcome"
id(str2) #2381521446368
str2 += " python"
id(str2) # 2381521558768

© Replication or other unauthorized use of this material is prohibited

Concatenation and Replication operations \?
* “+” operator : Combines values on either side of the operator

o 1%V

operator : Concatenates multiple copies of a string to create new strings
also known as replication Operator
Example:
strl = "Python "
str2 = "Programming"
print(strl+str2)

print(strl *3)

© Replication or other unauthorized use of this material is prohibited

Membership Operators on String \?

 "in" operator:

return true if substring is present in the specified string , else false.

* "potin" operator:
return true if substring does not exist in the specified string, else false.
Example:

str1="Python Programming"
"Program" in strl

"Program" not in strl

© Replication or other unauthorized use of this material is prohibited

String Slicing \?

Returns part of the string based on expression

Rules for Slicing notation:

1.

[n:m] returns “nt"” character to “mt™” character,
[:n] slice starts at the beginning of the string.
[n:] slice goes to the end of the string

[:] returns total string

If the first index is >= to the second index, result is an empty string,

© Replication or other unauthorized use of this material is prohibited

String Slicing examples

str1="Python Programming"
str1[0:6]

str1[7:18]

strl[:6]

stri[7:]

stri[:]

str1[5:3]

© Replication or other unauthorized use of this material is prohibited

String Functions — len() \?

* len() : returns the number of characters in a string

Ex:-

str1="Python Programming"
print (len(strl))

#calculate the length of a string

def string_length(strl):
count=0
for charin strl:
count+=1
return count

print(string_length('python programming'))

© Replication or other unauthorized use of this material is prohibited

String Traversal \?

* Processing string, one character at a time from starting character, select each character in turn, do

something to it, and continue until the end, known as traversal.

Using While Using for loop

str1="Python Programming" str1="Python Programming"
len1 = len(strl) for lin strl:

index =0 print(l)

while (index < len1):
letter = strlf[index]
print(letter)

index = index + 1

© Replication or other unauthorized use of this material is prohibited

String count() \?

* count() returns the number of occurrences of substring sub in the range [start, end].

- start and end are optional

str = "Python is an interpreted language"

str.count('i')

str.count('i', 7, 20)

© Replication or other unauthorized use of this material is prohibited

Splitting strings \?

* split() : returns a list of all the words in the string, using str as the separator

str = "Python is an interpreted language"

_ Note: split(str) where stris separator
str.split()

if not specified, splits on all whitespace

str = "Python,is,an,interpreted,language"

str.split(',")

© Replication or other unauthorized use of this material is prohibited

String join() \?

e join(iterable) : joins a list of strings using the object calling the string as the separator

- iterable includes List, Tuple, String, Dictionary and Set

strl = "Python is"
str2 = "a Programming language"

" join([strl,str2])

© Replication or other unauthorized use of this material is prohibited

Searching for substring using find() \?

* find() method returns the index of first occurrence of the substring

else returns -1

syntax: integer find(subl, start[, end]])

str = "Python is a programming language"
str.find('i’)
* rfind() method returns highest index

str.rfind('p’,10,20)

str.rfind('i')

© Replication or other unauthorized use of this material is prohibited

Searching for substring using index() \?

* index() : returns index of a substring.

else raises an exception.

index(subl[, start[, end]])

str = "Python is a programming language"

str.index('i’)
str.rindex('p',10,20)

str.index('z')
raises exception

© Replication or other unauthorized use of this material is prohibited

Check for char digit alphanumeric upper lower \?

* isalpha(): returns True if all characters in the string are alphabets, else returns False.

» isdigit() : returns True if all characters in a string are digits, else returns False.

function which accepts a sentence and finds the number of letters and digits in the sentence

s = input("Input a string")

d=I=0
forcins: Similarly string has various functions
if c.isdigit():
d=d+1 Islower()
elif c.isalphal(): Isupper()
|=1+1
else: Isalnum()
pass

print("Letters", |)
print("Digits", d)

© Replication or other unauthorized use of this material is prohibited

Replacing char/word \?

* replace(oldstr, newstr) :replaces a substring with an alternative string

str = "Python is an interpreted language"

str.replace('i','l')

str.replace("an",'a’)

© Replication or other unauthorized use of this material is prohibited

Removing spaces \?

e strip() : Remove spaces at the beginning and at the end of the string

» strip(characters) : Remove the leading and trailing characters

str=" welcome to python

print (str.Istrip())

str1=" welcome to python

print (str.istrip(" "))

© Replication or other unauthorized use of this material is prohibited

String processing using startwith() and endswith() \?

« startswith() : returns True if a string starts with the specified prefix(string), else False

syn: startswith(prefix[, start[, end]])

* endswith() :returns True if a string ends with the specified suffix, else returns False.

© Replication or other unauthorized use of this material is prohibited

