Hrenants
%‘2‘?‘ Wty -d;“"t{.;&
By o e

Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

ik

t—_:;g Functions in Python
FUNGIION £:

A Session 5,28 Sep 2022

Dr N V Ganapathi Raju
Professor and HOD of IT
GRIET

©Replication or other unauthorized use of this material is prohibited

Functions in Python

Functions allow us to group a number of statements into a logical block.

In programming function refers to a named sequence of operations that perform a
computation.

Used to provide modularity to complex applications and are defined to be re-usable /
manageable also saves time.

We communicate with a function through a clearly defined interface, providing
certain parameters to the function, and receiving some information back.

Apart from this interface, we generally do not how exactly a function does the work
to obtain the value it returns.

©Replication or other unauthorized use of this material is prohibited

Various kinds of Functions in Python

print(), tuple(), sum(), range(), min(), max(), list(), input()

e def function_name(argumentl, argument2):

¢ lambda arguments : expression

¢ def function_name(argumentl, argument2):

from Python's preinstalled modules

® math.sqrt(), math.ceil()

In general, Python supports 4 kinds of functions

Built-in functions: which are an integral part of Python (print(),
input()). Always available without any additional effort on behalf of the

programmetr.

User-defined functions which are written by users for users - you can
write your own functions and use them freely in your code.

A lambda function is a small function containing a single expression.
Helpful when we have to perform small tasks with less code.

from Python's preinstalled modules - a lot of functions, very useful
used significantly less often than built-in ones, are available in several
modules installed together with Python.

© Replication or other unauthorized use of this material is prohibited

User defined functions

Syntax of a function definition

def function_name(parameters):

= Syntax:
statement(s)

= def keyword: This marks the beginning of the function header.
= function_name: This is a unique name that identifies the function.

" parameters or arguments: Values are passed to the function by enclosing them in parentheses ().
optional.

= The colon (:) marks the end of the function header.
= statement(s):There must be one or more valid statements that make up the body of the function.
Notice that the statements are indented (typically tab or four spaces).

= An optional statement to return a value from the function.

© Replication or other unauthorized use of this material is prohibited

Syntax of function call

= To call a function, simply type the function name with appropriate parameters.

= Syntax of function call :

function_name (parameters)

= Arguments are the actual value that is passed into the calling function.

= Note 1: There must be a one-to-one correspondence between the formal parameters in the function

definition and the actual arguments of the calling function.
= Note 2: When we call a function, the control flows from the calling function to the function definition.

= Note 3: Once the block of statements in the function definition is executed, then the control flows back to the

calling function and proceeds with the next statement.

© Replication or other unauthorized use of this material is prohibited

return statement

= The return statement is used to exit a function and go back to the place from where it was called.

return [expression_list]

= This statement can contain an expression that gets evaluated and the value is returned.

= |fthere is no expression in the statement or the return statement itself is not present inside a

function, then the function will return the None object.

© Replication or other unauthorized use of this material is prohibited

How function works

Invocation

You mustn't invoke a function

def message():

which is not known at the
print ("Hello!") moment of invocation.

return Raises NamekError: exception

message()

= when you invoke a function, Python remembers the place where it happened and jumps into the invoked
function;

= the body of the function is then executed;

= reaching the end of the function forces Python to return to the place directly after the point of invocation

©Replication or other unauthorized use of this material is prohibited

functions for passing various type of data to function as arguments

def msgl(s):
print (s)

def mng(l)' programming
print (I) 1280.5

def msg3(f):
print (f)

msgl(“programming")

msg2(100)

msg3(1500.50)

©Replication or other unauthorized use of this material is prohibited

functions for addition of two numbers

def sum(x,y):

S=X+y def sum(x,vVy):
int ("Sum is inside function" ,s) Y S |
print ("Sum is inside function" s print ("Sum is inside function® ,s)
sum (10, 20)
sum(10,20)
def sum(x, vy} :
s=xX+y
def sum(x,y): return s
S=X+Y total=sum (10, 20)

print ("Sum is outside function",total)

return s L, :
Sum 15 1nside function 30

total=sum(10,20) Sum 1s outside function 30

print ("Sum is outside function®, total)

©Replication or other unauthorized use of this material is prohibited

function for finding biggest of two numbers

def max_2(x,y):
ifx>y:
return x
else :

returny

print(max_2(10,20))

def max 2(x, y):
if x > vy:
return x
else :
return vy
print (max 2(10,20))

20

©Replication or other unauthorized use of this material is prohibited

function for checking prime number

def prime(num):
n=1
count=0

while (n<=num):

if((hum%n)==0):

count=count+1
n=n+1
if(count==2):
return ("Prime")
else:
return ("not a prime")
res = prime(5)

print(res)

def prime (num) :

n=1
count=0
while (n<=num):
if ((num%n)==0) :
count=count+1l
n=n+1

if (count==_2) :
return ("Prime")
else:
return ("not a prime")
res = prime(5)
print (res)

Prime

©Replication or other unauthorized use of this material is prohibited

function for finding factorial of a given number

def factorial(num): def factorial (num) :

_ n=1
i while num>0:
while num>0: n=n*rnum
n=n*num num=num-1
return n
num=num-1
res=factorial (5)

return n prlnt (res)

res=factorial(5) 120

print(res)

©Replication or other unauthorized use of this material is prohibited

Scope and Lifetime of

variables

Scope and Lifetime of variables

= Python programs have two scopes: global and local.

= Avariable is a global variable if its value is accessible and modifiable throughout your program.
= Global variables have a global scope.

= Avariable that is defined inside a function definition is a local variable.

= The lifetime of a variable refers to the duration of its existence.

= The local variable is created and destroyed every time the function is executed, and it cannot be accessed

by any code outside the function definition.

= Local variables inside a function definition have local scope and exist as long as the function is executing.

© Replication or other unauthorized use of this material is prohibited

def message () :
a=10
print ("value of a is",a)
return

o message{)

#print (a)

Local variables

[S I]

[t =

print('

def message(): 1 print ('-—-——- local var————————- ')
2 def message () :
- 3 a=10
a_lo 4 print ("Value of a is",a)
. " T é return
print ("Value of a is",a) ¢ message ()
print (a)
return ————— local var-—————-—

NameError Tr
message() <ipython-input—-26-241609db£007> in
5 return

& message ()
——==> 7 print (a)

#print (a)

NameError: name 'a' is not defined

©Replication or other unauthorized use of this material is prohibited

Global variables

print(’
b=20
def message():
a=10
print ("Value of a is",a)

print ("Value of b is",b)

message()

#print (a)

print (b)

fad [|
o
Il
B3 H-
o=

def message () :
a=10
print ("value of a is",a)
print ("value of b is",b)

[N Iy =4

J on

(m]

message ()
9 #print (a)
10 print (b)

Value of a 1s 10
Value of b 1s 20
20

©Replication or other unauthorized use of this material is prohibited

Official : Scopes as per LEGB rule

There are four major types of variable scope and is the basis for the LEGB rule.

= LEGB stands for Local -> Enclosing -> Global -> Built-in.

= Local scope means, define a variable within a function.

= Global scope means, Whenever a variable is defined outside any function,

Global scope
. x=10
it becomes a global variable, and its scope is anywhere within the program.
def cuter():
. i . . # Enclosed scope
= Built-in Scope means, All the special reserved keywords fall under this scope. rer Lomer():
Local scope
x= 2

©Replication or other unauthorized use of this material is prohibited

Local vs Enclosing vs Global variables

test var=5

test var = 5

def outer_function(): def outer function():

test var =60 test var = &0
def inner function():
def inner_function(): test var = 100
print (f"Local var {test var} in inner fun")
test _var =100 inner function ()

print (f"Local var {test var} in outer fun")
outer function()
print (f"Global var {test var} in global")

print(f"Local var {test_var} in inner fun")

inner_function()

Local var 100 in inner fun
Local var 60 in outer fun
Global var 5 in global

print(f"Local var {test_var} in outer fun")

outer_function()

print(f"Global var {test_var} in global")

©Replication or other unauthorized use of this material is prohibited

Function Arguments in

Python

Function Arguments in Python

In Python, We can call a function using various types of formal arguments:
= Default arguments.
= Keyword arguments
= Required arguments/Positional arguments

= Flexible arguments (*args and **kwargs)

© Replication or other unauthorized use of this material is prohibited

Default arguments.

" |nsome cases, we have a function with multiple parameters and we have a common value for some of

them. We can specify default arguments for some of the function parameters.

" |n these cases, we can call our function without specifying the values for the parameters with default

arguments. To do this in Python, we can use the = sign followed by the default value.

def raise power (number, power = 2}:
return number ** power

def raise_power(number, power = 2):

return number ** power e T
print(raise_power(9)) print (raise_power(2, 3)}
AL
print(raise_power(2, 3)) s

© Replication or other unauthorized use of this material is prohibited

Keyword arguments

= Keyword arguments are related to the function calls. When you use keyword arguments in a function call,

the caller identifies the arguments by the parameter name.

= This allows you to skip arguments or place them out of order because the Python interpreter is able to

use the keywords provided to match the values with parameters.

= We can use the keyword arguments using the argument name and the = sign.

def raise power(number, power):

def raise_power(number, power):

return number ** power

return number ** power print (raise power(2, 3))
. . print (raise power (number = 2, power = 3))
print(raise_power(2, 3))
print (raise power(power = Z, number = 3))

print(raise_power(number = 2, power = 3))

o oo oo

print(raise_power(power = 2, number = 3))

© Replication or other unauthorized use of this material is prohibited

Required arguments (positional arguments)

= Required arguments must be passed to the function in the exact positional order to match the

function definition.

= |f the arguments are not passed in the right order, or if the arguments passed are more or less

than the number defined in the function, a syntax error will be encountered.

def sum(a,b): def sum(a,b):
c=a+b
C=a+b print (c)
sum (10, 20)
print (c) R 7

L
1

sum(10,20)

#sum(20)

© Replication or other unauthorized use of this material is prohibited

Flexible arguments

We may want to define a function which accepts more arguments than we have specified in the

function. We may need to pass any number of arguments to our function.

We can use the special syntax *args and **kwargs in our function definitions to achieve that.

*args : These arguments are called non-named variable-length arguments.
def add (*num) :

def add(*num): sum = 0
for n in num:
sum=0 _
. sum = sum + n
for nin num: print ("Sum: "™, sum)
sum=sum-+n
. " Rl add (10, 20)
prlnt(Sum: ,sum) add (10,20, 30, 40)
Sum: 30
Sum: 100

add(10,20)
add(10,20,30,40)

© Replication or other unauthorized use of this material is prohibited

Flexible arguments

= **kwargs : These arguments are called named variable-length arguments.

= Inthe function, we use the double asterisk ** before the parameter name to denote this type of
argument.

= The arguments are passed as a dictionary and these arguments make a dictionary inside function with
name same as the parameter excluding double asterisk **.

def kwargs_example(**kwargs):
print(type(kwargs))
print(kwargs)

kwargs_example(age = 25, position = "Data Scientist")

kwargs_example(name = “abc", email = "support@abc.com", position = "ML Engineer")

©Replication or other unauthorized use of this material is prohibited

Built-in functions

Built-in Functions

abs ()

all()

any ()
ascii()
bin()

bool()
breakpoint()
bytearray()
bytes ()
callable()
chr()
classmethod ()
compile()

complex()

delattr()
dict()
dir()
divmod()
enumerate()
eval()
exec()
filter()
float()
format()
frozenset()
getattr()
globals()

hasattr()

Built-in Functions

hash()

help()

hex()

id()

input()
int()
isinstance()
issubclass()
iter()

len()

list()
locals()

map ()

max()

memoryview()
min()
next ()
object()
oct()
open()
ord()
pow()
print()
property ()
range ()
repr()
reversed()

round()

set()
setattr()
slice()

sorted()

The Python interpreter has a number of functions that are built into it and are always available.

staticmethod()

str()
sum()
super()
tuple()
type()
vars()
zip()

__dmport_ ()

https://docs.python.org/3/library/functions.html

© Replication or other unauthorized use of this material is prohibited

Examples of built-in functions

print(abs(-3))

1 |print {abs(-3)}

print(min(1, 2, 3, 4, 5)) 2 print{min(l, 2, 3, 4, 3})
_ 2 print (max(4, 5, &, 7, B})
print(max(4, 5, 6, 7, 8)) 4 print{pow(3, 2)]
orint(pow(3, 2)) > print(len("Conduira Online™)}
print(len("Conduira Online")) ‘i
B
G
15

©Replication or other unauthorized use of this material is prohibited

Preinstalled modules

Preinstalled modules

Modules in Python are reusable libraries of code having .py extension, which implements a group of methods

and statements. Python comes with many built-in modules as part of the standard library.

To use a module in your program, import the module using import statement. All the import statements are

placed at the beginning of the program.

import module_name where import is a keyword

Example: import math

The math modaule is part of the Python standard library which provides access to various mathematical

functions and is always available to the programmer

The syntax for using a function defined in a module is, module_name.function_name()

© Replication or other unauthorized use of this material is prohibited

math module

1 import math

import math 2 print(math.ceil(5.4)]

: i 3 print (math.sqrt(4)}
print(math.ceil(5.4)) i print (math.pi)

. > | print (math.co=(1})
prlnt(math'sqrt(4)) & print {math.factorial (&)}
print(math.pi) 7 print (math.pow(2, 3))
print(math.cos(1)) ; -
print(math.factorial(6)) 3.141582653588753

0.5403023058681358
print(math.pow(2, 3)) 720
B

©Replication or other unauthorized use of this material is prohibited

random module

= Another useful module in the Python standard library is the random module which generates random numbers.

import random
print (random.random(})
import random print (random.randint (5, 10})

print(random.random())

.B7876Tee93 752806

L

print(random.randint(5,10))

= random() function generates a random floating-point number between 0 and 1 and it produces a different value each time.

= random randint(start, stop) which generates a integer number between start and stop argument numbers (including both).

© Replication or other unauthorized use of this material is prohibited

Recursive functions

Recursive Functions

= A recursive function is a function defined in terms of itself via self-referential

expressions.

= The function will continue to call itself and repeat its behavior until some condition is

met to return a result.

= All recursive functions share a common structure made up of two parts: base case and

recursive case.

© Replication or other unauthorized use of this material is prohibited

Examples using recursive functions in Python

def rec_cout(n):
if n<=0:
print(“Python!”)
else:
print(n)
rec_cout(n-1)

def print_n(s, n):

rec_cout(3)

if n<=0:
return

print(s)

print_n(s, n-1)

print_n(“Python",3)

©Replication or other unauthorized use of this material is prohibited

Recursive function for factorial of a given number

def factorial_recursive(n):
Basecase: 11=1
ifn==1:

return 1

Recursive case: n! = n * (n-1)!

else:

return n * factorial_recursive(n-1)

factorial_recursive(5)

=0

[

def factorial recursive(n):
Base case: 1! =1
if n = 1:

return 1

Recursive case: n! = n * {(n-1)!
else:

return n * factorial recursive(n-1)
factorial recursive (3)

©Replication or other unauthorized use of this material is prohibited

Lambda functions

lambda functions

= An anonymous function is a function that is defined without a name.

= While normal functions are defined using the def keyword in Python, anonymous functions are

defined using the lambda keyword.

Syntax for lambda functions: lambda arguments: expression

Lambda functions can have any number of arguments but return only one expression. The expression

is evaluated and returned.
= Lambda functions are syntactically restricted to return a single expression
= We can use lambda functions as an anonymous functions inside other functions

= Lambda functions can be used wherever function objects are required.

© Replication or other unauthorized use of this material is prohibited

Examples of lambda functions

vl=lambdax:x * 2
print(v1(5))

v2 = lambda x: x * 2

print(v2(5.0)) 10

10.0
v3=lambdax,y:x+y 15
print (v3 (5,10)) lambda functions

'Lambda Functions'
x="lambda functions"
(lambda x : print(x))(x)

Name = lambda first, second: first +' '+ second
Name('Lambda’, 'Functions')

© Replication or other unauthorized use of this material is prohibited

Limitations

= Since we can evaluate single expressions, features like
iteration,
conditionals,
exception handling cannot be specified.

= But very useful in the place of one-line functions that evaluate single expressions.

© Replication or other unauthorized use of this material is prohibited

Addition , multiplication and power operations

add = lambda a,b,c : a+b+c
print(add(5,3,2))

multiply = lambda x,y:x * y
print(multiply(3,7))

power = lambda m,n: m**n
print(power(6,2))

18
21
36

add = lambda a,b,c : a+b+cC
print(add(5,3,2))

multiply = lambda x,y:x * y
print(multiply(3,7))

power = lambda m,n: m**n
print(power{6,2))

© Replication or other unauthorized use of this material is prohibited

