
Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

Dr N V Ganapathi Raju
Professor and HOD of IT

GRIET

Functions in Python

Session 5 , 28 Sep 2022

Functions in Python

• Functions allow us to group a number of statements into a logical block.

• In programming function refers to a named sequence of operations that perform a
computation.

• Used to provide modularity to complex applications and are defined to be re-usable /
manageable also saves time.

• We communicate with a function through a clearly defined interface, providing
certain parameters to the function, and receiving some information back.

• Apart from this interface, we generally do not how exactly a function does the work
to obtain the value it returns.

Various kinds of Functions in Python

In general, Python supports 4 kinds of functions

• Built-in functions: which are an integral part of Python (print(),
input()). Always available without any additional effort on behalf of the
programmer.

• User-defined functions which are written by users for users - you can
write your own functions and use them freely in your code.

• A lambda function is a small function containing a single expression.
Helpful when we have to perform small tasks with less code.

• from Python's preinstalled modules - a lot of functions, very useful
used significantly less often than built-in ones, are available in several
modules installed together with Python.

User defined functions

Syntax of a function definition

▪ Syntax :

▪ def keyword: This marks the beginning of the function header.

▪ function_name: This is a unique name that identifies the function.

▪ parameters or arguments: Values are passed to the function by enclosing them in parentheses ().

optional.

▪ The colon (:) marks the end of the function header.

▪ statement(s):There must be one or more valid statements that make up the body of the function.

Notice that the statements are indented (typically tab or four spaces).

▪ An optional return statement to return a value from the function.

def function_name(parameters):

statement(s)

Syntax of function call

▪ To call a function, simply type the function name with appropriate parameters.

▪ Syntax of function call :

function_name (parameters)

▪ Arguments are the actual value that is passed into the calling function.

▪ Note 1: There must be a one-to-one correspondence between the formal parameters in the function

definition and the actual arguments of the calling function.

▪ Note 2: When we call a function, the control flows from the calling function to the function definition.

▪ Note 3: Once the block of statements in the function definition is executed, then the control flows back to the

calling function and proceeds with the next statement.

return statement

▪ The return statement is used to exit a function and go back to the place from where it was called.

return [expression_list]

▪ This statement can contain an expression that gets evaluated and the value is returned.

▪ If there is no expression in the statement or the return statement itself is not present inside a

function, then the function will return the None object.

How function works

▪ when you invoke a function, Python remembers the place where it happened and jumps into the invoked

function;

▪ the body of the function is then executed;

▪ reaching the end of the function forces Python to return to the place directly after the point of invocation

def message():

print ("Hello!")

return

message()

Function Definition

Function call

Invocation

You mustn't invoke a function

which is not known at the

moment of invocation.

Raises NameError: exception

functions for passing various type of data to function as arguments

def msg1(s):
print (s)

def msg2(i):
print (i)

def msg3(f):
print (f)

msg1(“programming")

msg2(100)

msg3(1500.50)

programming

100

1500.5

functions for addition of two numbers

def sum(x,y):

s=x+y

print ("Sum is inside function" ,s)

sum(10,20)

def sum(x,y):

s=x+y

return s

total=sum(10,20)

print ("Sum is outside function“, total)

function for finding biggest of two numbers

def max_2(x, y):

if x > y:

return x

else :

return y

print(max_2(10,20))

function for checking prime number

def prime(num):

n=1

count=0

while (n<=num):

if((num%n)==0):

count=count+1

n=n+1

if(count==2):

return ("Prime")

else:

return ("not a prime")

res = prime(5)

print(res)

function for finding factorial of a given number

def factorial(num):

n=1

while num>0:

n=n*num

num=num-1

return n

res=factorial(5)

print(res)

Scope and Lifetime of
variables

Scope and Lifetime of variables

▪ Python programs have two scopes: global and local.

▪ A variable is a global variable if its value is accessible and modifiable throughout your program.

▪ Global variables have a global scope.

▪ A variable that is defined inside a function definition is a local variable.

▪ The lifetime of a variable refers to the duration of its existence.

▪ The local variable is created and destroyed every time the function is executed, and it cannot be accessed

by any code outside the function definition.

▪ Local variables inside a function definition have local scope and exist as long as the function is executing.

Local variables

print('-----local var---------')

def message():

a=10

print ("Value of a is",a)

return

message()

#print (a)

Global variables

print('-----global var---------')

b=20

def message():

a=10

print ("Value of a is",a)

print ("Value of b is",b)

message()

#print (a)

print (b)

Official : Scopes as per LEGB rule

▪ There are four major types of variable scope and is the basis for the LEGB rule.

▪ LEGB stands for Local -> Enclosing -> Global -> Built-in.

▪ Local scope means, define a variable within a function.

▪ Enclosing scope means, defining variables in nested functions

▪ Global scope means, Whenever a variable is defined outside any function,

it becomes a global variable, and its scope is anywhere within the program.

▪ Built-in Scope means, All the special reserved keywords fall under this scope.

Local vs Enclosing vs Global variables

test_var = 5

def outer_function():

test_var = 60

def inner_function():

test_var = 100

print(f"Local var {test_var} in inner fun")

inner_function()

print(f"Local var {test_var} in outer fun")

outer_function()

print(f"Global var {test_var} in global")

Function Arguments in
Python

Function Arguments in Python

In Python, We can call a function using various types of formal arguments:

▪ Default arguments.

▪ Keyword arguments

▪ Required arguments/Positional arguments

▪ Flexible arguments (*args and **kwargs)

Default arguments.

▪ In some cases, we have a function with multiple parameters and we have a common value for some of

them. We can specify default arguments for some of the function parameters.

▪ In these cases, we can call our function without specifying the values for the parameters with default

arguments. To do this in Python, we can use the = sign followed by the default value.

def raise_power(number, power = 2):
return number ** power

print(raise_power(9))

print(raise_power(2, 3))

Keyword arguments

▪ Keyword arguments are related to the function calls. When you use keyword arguments in a function call,

the caller identifies the arguments by the parameter name.

▪ This allows you to skip arguments or place them out of order because the Python interpreter is able to

use the keywords provided to match the values with parameters.

▪ We can use the keyword arguments using the argument name and the = sign.

def raise_power(number, power):

return number ** power

print(raise_power(2, 3))

print(raise_power(number = 2, power = 3))

print(raise_power(power = 2, number = 3))

Required arguments (positional arguments)

▪ Required arguments must be passed to the function in the exact positional order to match the

function definition.

▪ If the arguments are not passed in the right order, or if the arguments passed are more or less

than the number defined in the function, a syntax error will be encountered.

def sum(a,b):

c=a+b

print (c)

sum(10,20)

#sum(20)

Flexible arguments

▪ We may want to define a function which accepts more arguments than we have specified in the

function. We may need to pass any number of arguments to our function.

▪ We can use the special syntax *args and **kwargs in our function definitions to achieve that.

▪ *args : These arguments are called non-named variable-length arguments.

def add(*num):
sum = 0
for n in num:

sum = sum + n
print("Sum:",sum)

add(10,20)
add(10,20,30,40)

Flexible arguments

▪ **kwargs : These arguments are called named variable-length arguments.

▪ In the function, we use the double asterisk ** before the parameter name to denote this type of
argument.

▪ The arguments are passed as a dictionary and these arguments make a dictionary inside function with
name same as the parameter excluding double asterisk **.

def kwargs_example(**kwargs):
print(type(kwargs))
print(kwargs)

kwargs_example(age = 25, position = "Data Scientist")

kwargs_example(name = “abc", email = "support@abc.com", position = "ML Engineer")

Built-in functions

Built-in Functions

▪ The Python interpreter has a number of functions that are built into it and are always available.

https://docs.python.org/3/library/functions.html

Examples of built-in functions

print(abs(-3))

print(min(1, 2, 3, 4, 5))

print(max(4, 5, 6, 7, 8))

print(pow(3, 2))

print(len("Conduira Online"))

Preinstalled modules

Preinstalled modules

▪ Modules in Python are reusable libraries of code having .py extension, which implements a group of methods

and statements. Python comes with many built-in modules as part of the standard library.

▪ To use a module in your program, import the module using import statement. All the import statements are

placed at the beginning of the program.

import module_name where import is a keyword

▪ Example : import math

▪ The math module is part of the Python standard library which provides access to various mathematical

functions and is always available to the programmer

▪ The syntax for using a function defined in a module is, module_name.function_name()

math module

import math

print(math.ceil(5.4))

print(math.sqrt(4))

print(math.pi)

print(math.cos(1))

print(math.factorial(6))

print(math.pow(2, 3))

random module

▪ Another useful module in the Python standard library is the random module which generates random numbers.

▪ random() function generates a random floating-point number between 0 and 1 and it produces a different value each time.

▪ random randint(start, stop) which generates a integer number between start and stop argument numbers (including both).

import random

print(random.random())

print(random.randint(5,10))

Recursive functions

Recursive Functions

▪ A recursive function is a function defined in terms of itself via self-referential

expressions.

▪ The function will continue to call itself and repeat its behavior until some condition is

met to return a result.

▪ All recursive functions share a common structure made up of two parts: base case and

recursive case.

Examples using recursive functions in Python

def rec_cout(n):
if n <= 0:
print(“Python!”)

else:
print(n)
rec_cout(n-1)

rec_cout(3) def print_n(s, n):

if n <= 0:

return

print(s)

print_n(s, n-1)

print_n(“Python",3)

Recursive function for factorial of a given number

def factorial_recursive(n):

Base case: 1! = 1

if n == 1:

return 1

Recursive case: n! = n * (n-1)!

else:

return n * factorial_recursive(n-1)

factorial_recursive(5)

Lambda functions

lambda functions

▪ An anonymous function is a function that is defined without a name.

▪ While normal functions are defined using the def keyword in Python, anonymous functions are

defined using the lambda keyword.

Syntax for lambda functions: lambda arguments: expression

▪ Lambda functions can have any number of arguments but return only one expression. The expression

is evaluated and returned.

▪ Lambda functions are syntactically restricted to return a single expression

▪ We can use lambda functions as an anonymous functions inside other functions

▪ Lambda functions can be used wherever function objects are required.

Examples of lambda functions

v1 = lambda x : x * 2
print(v1(5))

v2 = lambda x: x * 2
print(v2(5.0))

v3 = lambda x, y: x + y
print (v3 (5,10))

x="lambda functions"
(lambda x : print(x))(x)

Name = lambda first, second: first +' '+ second
Name('Lambda', 'Functions')

10
10.0
15
lambda functions
'Lambda Functions'

Limitations

▪ Since we can evaluate single expressions, features like

iteration,

conditionals,

exception handling cannot be specified.

▪ But very useful in the place of one-line functions that evaluate single expressions.

Addition , multiplication and power operations

add = lambda a,b,c : a+b+c
print(add(5,3,2))

multiply = lambda x,y:x * y
print(multiply(3,7))

power = lambda m,n: m**n
print(power(6,2))

