
PYTHON PROGRAMMING

Functions Part 2
Session 7 , 16 May 2023

Dr N V Ganapathi Raju
Professor and HOD of IT

GRIET

Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

Various kinds of Functions in Python

In general, Python supports 4 kinds of functions

• Built-in functions: which are an integral part of Python (print(),
input()). Always available without any additional effort on behalf of the
programmer.

• User-defined functions which are written by users for users - you can
write your own functions and use them freely in your code.

• A lambda function is a small function containing a single expression.
Helpful when we have to perform small tasks with less code.

• from Python's preinstalled modules - a lot of functions, very useful
used significantly less often than built-in ones, are available in several
modules installed together with Python.

Built-in functions

Built-in Functions

▪ The Python interpreter has a number of functions that are built into it and are always available.

https://docs.python.org/3/library/functions.html

Examples of built-in functions

print(abs(-3))

print(min(1, 2, 3, 4, 5))

print(max(4, 5, 6, 7, 8))

print(pow(3, 2))

print(len("Conduira Online"))

Built-In functions

▪ The Python core library has three methods called

• zip()

• map()

• filter()

• sorted()

• reduce()

• enumerate()

enumerate()

▪ An enumerator built-in-function adds a counter of iterable numbers to the provided data structure of integers,

characters or strings and many more.

▪ The data structure might be any list, tuple, dictionary or sets.

▪ If the counter is not provided by the user, then it starts from 0 by default.

▪ Based on the number provided the enumerator function iterates.

▪ Syntax: enumerate(iterable, start)

▪ The return type of an enumerate function is an object type.

▪ So the enumerate function returns an object by adding the iterating counter value to it. You can also convert the

enumerator object into a list(), tuple(), set() and many more.

zip() built-in function

• zip() : function take iterables (can be zero or more), makes iterator that aggregates elements based on the

iterables passed, and returns an iterator of tuples.

zip(*iterables)

• The zip() function returns an iterator of tuples based on the iterable object.

name = ["Akshay", "Dravid", "Sachin"]
roll_no = [10, 20, 30]
marks = [90, 88, 75]

mapped = zip(name, roll_no, marks)

print(list(mapped))

map() built in function

• map(fun, iter, ...) function applies a given function to each element of an iterable.

• fun : It is a function to which map passes each element of given iterable. iter : It is a iterable which is
to be mapped.

• The returned value from map() (map object) then can be passed to functions like list(), set().

nums = [1, 2, 3, 4, 5]
def sq(n):

return n*n

square = list(map(sq, nums))
print(square)

square of all elements in list

filter() built-in function

• filter() function filters the given iterable with the help of a function that tests each element in

the iterable to be true or not.

filter(fun, Iter)

• fun: function that tests if each element of a sequence true or not.

• Iter: Iterable which needs to be filtered.

filter() built-in function

• Function to filter out vowels from list

alphabets = ['a', 'b', 'd', 'e', 'i', 'j', 'o']

def filterVowels(alphabet):
vowels = ['a', 'e', 'i', 'o', 'u']

if(alphabet in vowels):
return True

else:
return False

filteredVowels = filter(filterVowels, alphabets)

print('The filtered vowels are:')
for vowel in filteredVowels:

print(vowel,end=" ")

filter()

▪ It takes a function and applies it to each item in the list to create a new list with only those items

that cause the function to return True.

def checkAge(age):
if age > 18:

return True
else:

return False

lst = [10,14,18,22,24]
adults = filter(checkAge, lst)
print(list(adults))

age = [10,14,18,22,24]

adults = filter(lambda x: x > 18, age)

print(list(adults))

sorted()

names = ['Guido van Rossum', 'Bjarne Stroustrup' , 'James Gosling']

print(sorted(names, key= lambda name: name.split()[-1])))

reduce()

▪ The reduce(fun,seq) function is used to apply a particular function passed in its argument to all

of the list elements mentioned in the sequence.

▪ This function is defined in “functools” module.

from functools import reduce

reduce(lambda x,y: x+y, [1,2,3,4])

max(), min()

studmarks = [('ABC', 35), ('CDE', 25), ('XYZ', 30),('PQR', 20),]

maxlst = max(studmarks, key=lambda student: student[1])

minlst = min(studmarks, key=lambda student: student[1])

print(maxlst)

print(minlst)

Lambda functions

lambda functions

▪ An anonymous function is a function that is defined without a name.

▪ While normal functions are defined using the def keyword in Python, anonymous functions are

defined using the lambda keyword.

Syntax for lambda functions: lambda arguments: expression

▪ Lambda functions can have any number of arguments but return only one expression. The expression

is evaluated and returned.

▪ Lambda functions are syntactically restricted to return a single expression

▪ We can use lambda functions as an anonymous functions inside other functions

▪ Lambda functions can be used wherever function objects are required.

Examples of lambda functions
int = lambda x: x * 2

print(int(5)) # 10

float = lambda x: x * 2

print(float(5.0)) # 10.0

add = lambda x, y: x + y

print (add (5,10)) # 15

x="Conduira Online"

(lambda x : print(x))(x) # Conduira Online

Name = lambda first, second: first +' '+ second

Name('Conduira', 'Online’) # ‘Conduira
Online’

Python lambda function, as Immediately
Invoked Function Expression (IIFE)

(lambda x, y: x + y)(2, 3) # 5

higher-order functions

▪ Lambda functions are frequently used with higher-order functions, which take one or more

functions as arguments or return one or more functions.

▪ A lambda function can be a higher-order function by taking a function (normal or lambda) as an

argument.

high_ord_func = lambda x, func: x + func(x)

print(high_ord_func(2, lambda x: x + 3)) # 7

=> 2 + fun(2+3)
=> 2 + 5
=> 7

Arguments

▪ Like a normal function object defined with def, Python lambda expressions support all the

different ways of passing arguments. This includes:

▪ Positional arguments

▪ Named arguments (keyword arguments)

▪ Variable list of arguments (often referred to as var-args)

▪ Variable list of keyword arguments

▪ Keyword-only arguments

Arguments

print((lambda x, y, z: x + y + z)(1, 2, 3)) # 6

print((lambda x, y, z=3: x + y + z)(1, 2)) # 6

print((lambda x, y, z=3: x + y + z)(1, y=2)) # 6

print((lambda *args: sum(args))(1,2,3)) # 6

print((lambda **kwargs: sum(kwargs.values()))(one=1, two=2, three=3)) # 6

Limitations

▪ Since we can evaluate single expressions, features like

iteration,

conditionals,

exception handling cannot be specified.

▪ But very useful in the place of one-line functions that evaluate single expressions.

Addition , multiplication and power operations

add = lambda a,b,c : a+b+c
print(add(5,3,2))

multiply = lambda x,y:x * y
print(multiply(3,7))

power = lambda m,n: m**n
print(power(6,2))

Preinstalled modules

Preinstalled modules

▪ Modules in Python are reusable libraries of code having .py extension, which implements a group of methods

and statements. Python comes with many built-in modules as part of the standard library.

▪ To use a module in your program, import the module using import statement. All the import statements are

placed at the beginning of the program.

import module_name where import is a keyword

▪ Example : import math

▪ The math module is part of the Python standard library which provides access to various mathematical

functions and is always available to the programmer

▪ The syntax for using a function defined in a module is, module_name.function_name()

math module

import math

print(math.ceil(5.4))

print(math.sqrt(4))

print(math.pi)

print(math.cos(1))

print(math.factorial(6))

print(math.pow(2, 3))

random module

▪ Another useful module in the Python standard library is the random module which generates random numbers.

▪ random() function generates a random floating-point number between 0 and 1 and it produces a different value each time.

▪ random randint(start, stop) which generates a integer number between start and stop argument numbers (including both).

import random

print(random.random())

print(random.randint(5,10))

Creating our own Module

Packages

Packages in Python

▪ Suppose we have developed a very large application that includes many modules.

▪ As the number of modules grows, it becomes difficult to keep track of them.

▪ So we need to group them based on similar functionality and organize them.

Packages in Python

▪ Packages allow for a hierarchical structuring of the module namespace using dot notation.

▪ In the same way that modules help avoid collisions between global variable names, packages

help avoid collisions between module names.

▪ To create a package, makes use of the operating system’s inherent hierarchical file structure.

▪ Create a directory named pkg that contains two modules, mod1.py and mod2.py and a blank

__init__.py

▪ Each package in Python is a directory which MUST contain a special file called __init__.py.

Creating and invoking a package

def show():
print("in Show() of mod1")

def show2():
print("in Show() of mod2")

import pkg.mod1, pkg.mod2
pkg.mod1.show()

pkg.mod2.show2()

Steps

▪ Create a directory with name pkg

▪ Under pkg directory

▪ Create a python program mod1.py

▪ Create a python program mod2.py

▪ Create a blank python program with __init__.py

▪ Create a mainprogram.py to invoke both packages

▪ Run mainprg.py in Idle terminal … executes modules.

mod1.py

mod2.py

mainprg.py

mainprg.py must be outside pkg

Package Initialization

▪ If a file named __init__.py is present in a package directory, it is invoked when the package or a

module in the package is imported.

▪ This can be used for execution of package initialization code, such as initialization of package-

level data.

Recursive functions

Recursive Functions

▪ A recursive function is a function defined in terms of itself via self-referential

expressions.

▪ The function will continue to call itself and repeat its behavior until some condition is

met to return a result.

▪ All recursive functions share a common structure made up of two parts: base case and

recursive case.

Examples using recursive functions in Python

def rec_cout(n):
if n <= 0:
print(“hello!')

else:
print(n)
rec_cout(n-1)

rec_cout(3) def print_n(s, n):

if n <= 0:

return

print(s)

print_n(s, n-1)

print_n(“hello",3)

Recursive function for factorial of a given number

def factorial_recursive(n):

Base case: 1! = 1

if n == 1:

return 1

Recursive case: n! = n * (n-1)!

else:

return n * factorial_recursive(n-1)

factorial_recursive(5)

Lambda functions

lambda functions

▪ An anonymous function is a function that is defined without a name.

▪ While normal functions are defined using the def keyword in Python, anonymous functions are

defined using the lambda keyword.

Syntax for lambda functions: lambda arguments: expression

▪ Lambda functions can have any number of arguments but return only one expression. The expression

is evaluated and returned.

▪ Lambda functions are syntactically restricted to return a single expression

▪ We can use lambda functions as an anonymous functions inside other functions

▪ Lambda functions can be used wherever function objects are required.

Examples of lambda functions

v1 = lambda x : x * 2
print(v1(5))

v2 = lambda x: x * 2
print(v2(5.0))

v3 = lambda x, y: x + y
print (v3 (5,10))

x="lambda functions"
(lambda x : print(x))(x)

Name = lambda first, second: first +' '+ second
Name('Lambda', 'Functions')

10
10.0
15
lambda functions
'Lambda Functions'

Limitations

▪ Since we can evaluate single expressions, features like

iteration,

conditionals,

exception handling cannot be specified.

▪ But very useful in the place of one-line functions that evaluate single expressions.

Addition , multiplication and power operations

add = lambda a,b,c : a+b+c
print(add(5,3,2))

multiply = lambda x,y:x * y
print(multiply(3,7))

power = lambda m,n: m**n
print(power(6,2))

	Default Section
	Slide 1
	Slide 2: Various kinds of Functions in Python
	Slide 3: Built-in functions
	Slide 4: Built-in Functions
	Slide 5: Examples of built-in functions
	Slide 6: Built-In functions
	Slide 7: enumerate()
	Slide 8: zip() built-in function
	Slide 9: map() built in function
	Slide 11: filter() built-in function
	Slide 12: filter() built-in function
	Slide 13: filter()
	Slide 14: sorted()
	Slide 15: reduce()
	Slide 16: max(), min()
	Slide 17: Lambda functions
	Slide 18: lambda functions
	Slide 19: Examples of lambda functions
	Slide 20: higher-order functions
	Slide 21: Arguments
	Slide 22: Arguments
	Slide 23: Limitations
	Slide 24: Addition , multiplication and power operations
	Slide 25: Preinstalled modules
	Slide 26: Preinstalled modules
	Slide 27: math module
	Slide 28: random module
	Slide 29
	Slide 30: Packages
	Slide 31: Packages in Python
	Slide 32: Packages in Python
	Slide 33: Creating and invoking a package
	Slide 34: Package Initialization
	Slide 35: Recursive functions
	Slide 36: Recursive Functions
	Slide 37: Examples using recursive functions in Python
	Slide 38: Recursive function for factorial of a given number
	Slide 42: Lambda functions
	Slide 43: lambda functions
	Slide 44: Examples of lambda functions
	Slide 45: Limitations
	Slide 46: Addition , multiplication and power operations

