Jawaharlal Nehru Techliological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

PYTHON PROGRAMMING
e

@g Functions Part 2

A Session 7, 16 May 2023

Dr N V Ganapathi Raju
Professor and HOD of IT
GRIET

©Replication or other unauthorized use of this material is prohibited

Various kinds of Functions in Python

print(), tuple(), sum(), range(), min(), max(), list(), input()

e def function_name(argumentl, argument2):

¢ lambda arguments : expression

* def function_name(argumentl, argument2):

from Python's preinstalled modules

® math.sqrt(), math.ceil()

In general, Python supports 4 kinds of functions

Built-in functions: which are an integral part of Python (print(),
input()). Always available without any additional effort on behalf of the

programmetr.

User-defined functions which are written by users for users - you can
write your own functions and use them freely in your code.

A lambda function is a small function containing a single expression.
Helpful when we have to perform small tasks with less code.

from Python's preinstalled modules - a lot of functions, very useful
used significantly less often than built-in ones, are available in several
modules installed together with Python.

© Replication or other unauthorized use of this material is prohibited

Built-in functions

Built-in Functions

abs ()

all()

any ()
ascii()
bin()

bool()
breakpoint()
bytearray()
bytes ()
callable()
chr()
classmethod ()
compile()

complex()

delattr()
dict()
dir()
divmod()
enumerate()
eval()
exec()
filter()
float()
format()
frozenset()
getattr()
globals()

hasattr()

Built-in Functions

hash()

help()

hex()

id()

input()
int()
isinstance()
issubclass()
iter()

len()

list()
locals()

map ()

max()

memoryview()
min()
next ()
object()
oct()
open()
ord()
pow()
print()
property ()
range ()
repr()
reversed()

round()

set()
setattr()
slice()

sorted()

The Python interpreter has a number of functions that are built into it and are always available.

staticmethod()

str()
sum()
super()
tuple()
type()
vars()
zip()

__dmport_ ()

https://docs.python.org/3/library/functions.html

© Replication or other unauthorized use of this material is prohibited

Examples of built-in functions

print(abs(-3))

1 |print {abs(-3)}

print(min(1, 2, 3, 4, 5)) 2 print{min(l, 2, 3, 4, 3})
_ 2 print (max(4, 5, &, 7, B})
print(max(4, 5, 6, 7, 8)) 4 print{pow(3, 2)]
orint(pow(3, 2)) > print(len("Conduira Online™)}
print(len("Conduira Online")) ‘i
B
G
15

©Replication or other unauthorized use of this material is prohibited

Built-In functions

= The Python core library has three methods called

zip()
map()
filter()
sorted()
reduce()

enumerate()

© Replication or other unauthorized use of this material is prohibited

enumerate()

= An enumerator built-in-function adds a counter of iterable numbers to the provided data structure of integers,

characters or strings and many more.
= The data structure might be any list, tuple, dictionary or sets.
= |f the counter is not provided by the user, then it starts from 0 by default.
= Based on the number provided the enumerator function iterates.
= Syntax: enumerate(iterable, start)
= The return type of an enumerate function is an object type.

= So the enumerate function returns an object by adding the iterating counter value to it. You can also convert the

enumerator object into a list(), tuple(), set() and many more.

© Replication or other unauthorized use of this material is prohibited

zip() built-in function

e zip() : function take iterables (can be zero or more), makes iterator that aggregates elements based on the

iterables passed, and returns an iterator of tuples.

zip(*iterables)

* The zip() function returns an iterator of tuples based on the iterable object.

name = ["Akshay", "Dravid", "Sachin"]

name = ["Akshay"”, "Dravid”, "Sachin"”]
roll_no =[10, 20, 30] roll no = [18, 20, 30]

ks = [9@

marks = [90, 88, 75] marks = [90, 88, 75]

mapped = zip(name, roll no, marks}
mapped = zip(name, roll_no, marks) print(list(mapped))

[('Akshay', 18, 9@), ('Dravid', 2o, 88), ('sachin', 38, 75)]

print(list(mapped))

© Replication or other unauthorized use of this material is prohibited

map() built in function

 map(fun, iter, ...) function applies a given function to each element of an iterable.

 fun:ltis afunction to which map passes each element of given iterable. iter : It is a iterable which is
to be mapped.

 The returned value from map() (map object) then can be passed to functions like list(), set().

List, [m, n, p]

Function, f() New list, [f(m), f(n), f(p)]

nums =[1, 2, 3, 4, 5] nums = [1, 2, 3, 4, 5]
def sq(n): def sq(n):
return n*n return n*n square of all elements in list
square = list(map{sq, nums))
square = list(map(sqg, nums)) print (square)
print(square) [1, 4, 9, 16, 25]

© Replication or other unauthorized use of this material is prohibited

filter() built-in function

» filter() function filters the given iterable with the help of a function that tests each element in

the iterable to be true or not.

filter(fun, Iter)

* fun: function that tests if each element of a sequence true or not.

* |ter: Iterable which needs to be filtered.

List, [m, n, p]

Condition, c() New list, [m, n]

if (m == condition)

© Replication or other unauthorized use of this material is prohibited

filter() built-in function

 Function to filter out vowels from list

alphabets - [lal |b| |d| | | I’ IJ|’ 1 l]

def filterVowels(alphabet):
VOWGlS - [l 1 l 1 | 1 | , Iul]

if(alphabet in vowels):
return True

else:
return False

filteredVowels = filter(filterVowels, alphabets)
print('The filtered vowels are:')

for vowel in filteredVowels:
print(vowel,end="")

alphabets = ["a’, 'b", 'd', "e’, 1", '§', "0']

def fllterVDwel5(alphabet}

vowels = ['a’ » 1', 'o', "u']

if(alphabet in vowels):
return True

else:
return False

filteredVowels = filter(filterVowels, alphabets)

print('The filtered vowels are:")
for vowel in filteredvVowels:

print(vowel,end=" ")

The filtered wvowels are:

aeio

© Replication or other unauthorized use of this material is prohibited

filter()

= |t takes a function and applies it to each item in the list to create a new list with only those items

that cause the function to return True.

def checkAge(age): age = [10,14,18,22,24]
if age > 18:
return True adults = filter(lambda x: x > 18, age)
else: print(list(adults))

return False

Ist = [10,14,18,22,24]

adults = filter(checkAge, Ist) age = [10,14,18,22,24]
i i adults = filter(lambda x: x > 18, age)
print(list(adults)) print(list{adults))
[22, 24]

© Replication or other unauthorized use of this material is prohibited

sorted()

names = ['Guido van Rossum’, 'Bjarne Stroustrup', 'James Gosling']

print(sorted(names, key=lambda name: name.split()[-1])))

names = ['Guido van Rossum®, "Bjarne Stroustrup’ , 'James Gosling']
print(sorted{names, key= lambda name: name.split{)[-1]))

["James Gosling', 'Guido van Rossum', 'Bjarne Stroustrup’]

© Replication or other unauthorized use of this material is prohibited

reduce()

= The reduce(fun,seq) function is used to apply a particular function passed in its argument to all

of the list elements mentioned in the sequence.

= This function is defined in “functools” module.

from functools import reduce ,
from functools import reduce

reduce(lambda x,y: x+y, [1,2,3,4]) reduce(lambda x,y: x+y, [1,2,3,4])
16

© Replication or other unauthorized use of this material is prohibited

max(), min()

studmarks = [('ABC', 35), (‘CDE’, 25), ('XYZ', 30),('PQR’, 20),]
max|st = max(studmarks, key=lambda student: student[1])

minlst = min(studmarks, key=lambda student: student[1])

print(maxlst)

print(minlst)

studmarks = [("ABC', 35), ('CDE', 25), ('XYZ', 30),('PQR', 20),]
maxlst = max(studmarks, key=lambda student: student[1])

minlst = min(studmarks, key=lambda student:

print(maxlst)
print(minlst)

("ABC', 35)
('PQR", 28@)

student[1])

© Replication or other unauthorized use of this material is prohibited

Lambda functions

lambda functions

= An anonymous function is a function that is defined without a name.

= While normal functions are defined using the def keyword in Python, anonymous functions are

defined using the lambda keyword.

Syntax for lambda functions: lambda arguments: expression

Lambda functions can have any number of arguments but return only one expression. The expression

is evaluated and returned.
= Lambda functions are syntactically restricted to return a single expression
= We can use lambda functions as an anonymous functions inside other functions

= Lambda functions can be used wherever function objects are required.

© Replication or other unauthorized use of this material is prohibited

Examples of lambda functions

int = lambda x: x * 2
print(int(5)) # 10

float = lambda x: x * 2

print(float(5.0)) # 10.0
Python lambda function, as Immediately

Invoked Function Expression (lIFE)
add =lambdax, y: x+y

print (add (5,10)) # 15 (lambda x, y: x +v)(2,3) #5

x="Conduira Online"

(lambda x : print(x))(x) # Conduira Online

Name = lambda first, second: first +' '+ second

Name('Conduira’, 'Online’) # ‘Conduira
Online’

© Replication or other unauthorized use of this material is prohibited

higher-order functions

= Lambda functions are frequently used with higher-order functions, which take one or more

functions as arguments or return one or more functions.

= A lambda function can be a higher-order function by taking a function (normal or lambda) as an

argument.

high_ord_func = lambda x, func: x + func(x) => 2 + fun(2+3)

=>2+5

print(high_ord_func(2, lambda x: x + 3)) #7 =>7

© Replication or other unauthorized use of this material is prohibited

Arguments

= Like a normal function object defined with def, Python lambda expressions support all the

different ways of passing arguments. This includes:
= Positional arguments
= Named arguments (keyword arguments)

= Variable list of arguments (often referred to as var-args)

= Variable list of keyword arguments

= Keyword-only arguments

© Replication or other unauthorized use of this material is prohibited

Arguments

print((lambda x, y, z: x+vy + z)(1, 2, 3)) # 6
print((lambda x, y, z=3: x + y + z)(1, 2)) # 6
print((lambda x, y, z=3: x + y + z)(1, y=2)) #6
print((lambda *args: sum(args))(1,2,3)) # 6

print((lambda **kwargs: sum(kwargs.values()))(one=1, two=2, three=3)) # 6

© Replication or other unauthorized use of this material is prohibited

Limitations

= Since we can evaluate single expressions, features like
iteration,
conditionals,
exception handling cannot be specified.

= But very useful in the place of one-line functions that evaluate single expressions.

© Replication or other unauthorized use of this material is prohibited

Addition , multiplication and power operations

add = lambda a,b,c : a+b+c
print(add(5,3,2))

multiply = lambda x,y:x * y
print(multiply(3,7))

power = lambda m,n: m**n
print(power(6,2))

18
21
36

add = lambda a,b,c : a+b+cC
print(add(5,3,2))

multiply = lambda x,y:x * y
print(multiply(3,7))

power = lambda m,n: m**n
print(power{6,2))

© Replication or other unauthorized use of this material is prohibited

Preinstalled modules

Preinstalled modules

Modules in Python are reusable libraries of code having .py extension, which implements a group of methods

and statements. Python comes with many built-in modules as part of the standard library.

To use a module in your program, import the module using import statement. All the import statements are

placed at the beginning of the program.

import module_name where import is a keyword

Example: import math

The math modaule is part of the Python standard library which provides access to various mathematical

functions and is always available to the programmer

The syntax for using a function defined in a module is, module_name.function_name()

© Replication or other unauthorized use of this material is prohibited

math module

1 import math

import math 2 print(math.ceil(5.4)]

:) 3 print (math.sqrt(4)}
print(math.ceil(5.4)) i print (math.pi)

. > print {(math.cos (1))
prlnt(math'sqrt(4)) & print {math.factorial (&)}
print(math.pi) 7 print (math.pow(2, 3))
print(math.cos(1)) ; -
print(math.factorial(6)) 3.141592853388733

0.5403023058601358
print(math.pow(2, 3)) 720
B

©Replication or other unauthorized use of this material is prohibited

random module

= Another useful module in the Python standard library is the random module which generates random numbers.

import random
print (random.random(})
import random print (random.randint (5, 10})

print(random.random())

.B7876Tee93 752806

L

print(random.randint(5,10))

= random() function generates a random floating-point number between 0 and 1 and it produces a different value each time.

= random randint(start, stop) which generates a integer number between start and stop argument numbers (including both).

© Replication or other unauthorized use of this material is prohibited

Creating our own Module

©Replication or other unauthorized use of this material is prohibited

Packages in Python

= Suppose we have developed a very large application that includes many modules.
= As the number of modules grows, it becomes difficult to keep track of them.

= So we need to group them based on similar functionality and organize them.

© Replication or other unauthorized use of this material is prohibited

Packages in Python

= Packages allow for a hierarchical structuring of the module namespace using dot notation.

" |n the same way that modules help avoid collisions between global variable names, packages

help avoid collisions between module names.
= To create a package, makes use of the operating system’s inherent hierarchical file structure.

= (Create a directory named pkg that contains two modules, mod1.py and mod2.py and a blank

init__.py

= Each package in Python is a directory which MUST contain a special file called __init__.py.

© Replication or other unauthorized use of this material is prohibited

Creating and inVOking a paCkage mainprg.py must be outside pkg

Steps mod1.py) ek
def show(): e; mod1 . py
= Create a directory with name pkg print("in Show() of mod1") @) noaz.py
mod2.py _
e,] _init__ "F¥

= Under pkg directory def show2():
print("in Show() of mod2")
= Create a python program mod1.py .
mainprg.py e'] iainpre.y

= Create a python program mod2.py
import pkg.mod1, pkg.mod?2

= Create a blank python program with __init__.py pkg.mod1l.show()
L& | & Python 2.2.4 Shell
n C t : t H k b th k File Edit Format Run Options Wil File Edit Shell Debug Op
reate a malnprogram.py to INVOke both packages pkngdZShOWZ() pkg.modl, pkg.mod2 | Python 3.8.4 (tags/v3
pkg.modl . show () tel)] on win32
= Run mainprg.py in Idle terminal ... executes modules. kg mod . shows (Jipe Themet, Teepvmd
RESTAR
'i in Sheow() of modl
1'1 Sl'm:iwi] of mod2

© Replication or other unauthorized use of this material is prohibited

Package Initialization

= |fafilenamed init_ .py is presentin a package directory, it is invoked when the package or a

module in the package is imported.

= This can be used for execution of package initialization code, such as initialization of package-

level data.

© Replication or other unauthorized use of this material is prohibited

Recursive functions

Recursive Functions

= A recursive function is a function defined in terms of itself via self-referential

expressions.

= The function will continue to call itself and repeat its behavior until some condition is

met to return a result.

= All recursive functions share a common structure made up of two parts: base case and

recursive case.

© Replication or other unauthorized use of this material is prohibited

Examples using recursive functions in Python

def rec_cout(n):
if n<=0:
print(“hello!’)
else:
print(n)
rec_cout(n-1)

def print_n(s, n):

rec_cout(3)

ifn<=0:
return

print(s)

print_n(s, n-1)

print_n(“hello",3)

©Replication or other unauthorized use of this material is prohibited

Recursive function for factorial of a given number

def factorial_recursive(n):
Basecase: 11=1
ifn==1:

return 1

Recursive case: n!l =n * (n-1)!

else:

return n * factorial_recursive(n-1)

factorial_recursive(5)

=0

[

def factorial recursive(n):
Base case: 1! =1
if n = 1:

return 1

Recursive case: n! = n * {(n-1)!
else:

return n * factorial recursive(n-1)
factorial recursive (3)

©Replication or other unauthorized use of this material is prohibited

Lambda functions

lambda functions

= An anonymous function is a function that is defined without a name.

= While normal functions are defined using the def keyword in Python, anonymous functions are

defined using the lambda keyword.

Syntax for lambda functions: lambda arguments: expression

Lambda functions can have any number of arguments but return only one expression. The expression

is evaluated and returned.
= Lambda functions are syntactically restricted to return a single expression
= We can use lambda functions as an anonymous functions inside other functions

= Lambda functions can be used wherever function objects are required.

© Replication or other unauthorized use of this material is prohibited

Examples of lambda functions

vl=lambdax:x * 2
print(v1(5))

v2 = lambda x: x * 2

print(v2(5.0)) 10

10.0
v3=lambdax,y:x+y 15
print (v3 (5,10)) lambda functions

'Lambda Functions'
x="lambda functions"
(lambda x : print(x))(x)

Name = lambda first, second: first +' '+ second
Name('Lambda’, 'Functions')

© Replication or other unauthorized use of this material is prohibited

Limitations

= Since we can evaluate single expressions, features like
iteration,
conditionals,
exception handling cannot be specified.

= But very useful in the place of one-line functions that evaluate single expressions.

© Replication or other unauthorized use of this material is prohibited

Addition , multiplication and power operations

add = lambda a,b,c : a+b+c
print(add(5,3,2))

multiply = lambda x,y:x * y
print(multiply(3,7))

power = lambda m,n: m**n
print(power(6,2))

18
21
36

add = lambda a,b,c : a+b+cC
print(add(5,3,2))

multiply = lambda x,y:x * y
print(multiply(3,7))

power = lambda m,n: m**n
print(power{6,2))

© Replication or other unauthorized use of this material is prohibited

	Default Section
	Slide 1
	Slide 2: Various kinds of Functions in Python
	Slide 3: Built-in functions
	Slide 4: Built-in Functions
	Slide 5: Examples of built-in functions
	Slide 6: Built-In functions
	Slide 7: enumerate()
	Slide 8: zip() built-in function
	Slide 9: map() built in function
	Slide 11: filter() built-in function
	Slide 12: filter() built-in function
	Slide 13: filter()
	Slide 14: sorted()
	Slide 15: reduce()
	Slide 16: max(), min()
	Slide 17: Lambda functions
	Slide 18: lambda functions
	Slide 19: Examples of lambda functions
	Slide 20: higher-order functions
	Slide 21: Arguments
	Slide 22: Arguments
	Slide 23: Limitations
	Slide 24: Addition , multiplication and power operations
	Slide 25: Preinstalled modules
	Slide 26: Preinstalled modules
	Slide 27: math module
	Slide 28: random module
	Slide 29
	Slide 30: Packages
	Slide 31: Packages in Python
	Slide 32: Packages in Python
	Slide 33: Creating and invoking a package
	Slide 34: Package Initialization
	Slide 35: Recursive functions
	Slide 36: Recursive Functions
	Slide 37: Examples using recursive functions in Python
	Slide 38: Recursive function for factorial of a given number
	Slide 42: Lambda functions
	Slide 43: lambda functions
	Slide 44: Examples of lambda functions
	Slide 45: Limitations
	Slide 46: Addition , multiplication and power operations

