
Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

Learning Objectives: 

Tuple , Dictionaries, Dictionary Comprehension

Session 8 , 4 Oct 22

Dr N V Ganapathi Raju
Professor and HOD of IT

GRIET



Python Tuple

• A tuple is a sequence of values , Values can be any type, are indexed by integers

• immutable objects; cannot be changed

• Used to create write-protected data.

- are not dynamic, faster than lists

• Tuple is enclosed between parenthesis

• Tuple Vs List

- Tuple is like list

- Difference is, List have mutable objects whereas Tuple have immutable objects.

- List is enclosed between square bracket, tuple between parenthesis



Creating Tuple

• Tuples are defined in parentheses () , values are separated by commas

• Contain values of different data types.

• Can be an empty 

• A single valued tuple,

- must be a comma at the end of the value

• Can also be nested.

• If a Tuple does not enclose with parenthesis, still it will be considered as tuple



Creating Tuple example

t1=(10,20.50,"python",'p',True)

t2=  10,20.50,"python",'p',True

t3 =  (10,)

t4 =  ()

t5 =  (10,20.50,"python")

t6=   (t5,'p',True)

t7 = tuple()



Accessing Tuple values

• Use square bracket [], to slice along the index or indices and access the values of a tuple

• Tuple elements can be accessed like String and List

- Forward Indexing  , indexing start with 0 to n-1    (Reading from Left to Right)

- Backward Indexing, indexing start with -1 to –n   ( Reading from Right to Left)



Accessing Tuple elements example

t1=(10,20.50,"python",'p',True)

t1[0]

t1[4]

t1[-1]

t1[-5]

t1[5]

t1[-6]

IndexError: tuple index out of range



Tuple Slicing

• Slicing is used to select range of values from tuple object

syn: [start_index : end_index : step].

- start_index is the beginning index of the slice; default value is 0.

- end_index is the end index of the slice; default value is the len(sequence).

- step is the amount by which the index increases, the default value is 1. 



Tuple slicing example

t1 = ("python","tuples","are","immutable","write","protected")

print(t1[1:4])

print(t1[:4])

print(t1[:])

print(t1[::2])

print(t1[::-1])



Tuple basic operations

• Membership operators

- in returns True if an item is present in sequence else False

- not in returns True if an item is not present in sequence else False

• Addition Tuple

- Tuple can be added by using the concatenation operator(+) to join two tuples.

• Replicating Tuple:

- Replicating can be performed by using '*' operator by a specific number of time.



Tuple basic operations example

t1 = (10,20.50,"python",'p',True)

'p' in t1

20.50 not in t1 t1 = ("python","tuples","are")

t2 = ("and","immutable","write","protected")

t3 = t1 + t2

print(t3)

t4 = ("Immutable " * 3)
print(t4)



Tuple basic operations

• Updating elements in a List:

- Elements of the Tuple cannot be updated. since Tuples are immutable. 

• Deleting elements from Tuple:

- Deleting individual element from a tuple is not supported. 

- Whole of the tuple can be deleted using the del statement

t1=(10,20,'rahul',40.6,'z')  

print (t1)

del (t1)



Index and Count

• index() : searches an element in a tuple and returns its index.

- returns its position

- if the same element is present more than once, the first position is returneda

- If no element is found, a ValueError exception is raised indicating the element is not found.

t2=(10,'savik',40.6,'z')  

print(t2.index(40.6))

# print(t2.index('a’)) 
raises     ValueError: tuple.index(x): x not in tuple

t2=(10,'savik',40.6,10,'z')  

print(t2.count(10))



Tuple operations

• min(), max() and len()

built-in function to get the maximum value, minimum values and the length of a sequence.

t1=(100, 255.55, True)

print(len(t1))

print(min(t1))

print(max(t1))

print()



unpacking

• unpack : tuple into variables. 

- when unpacking a tuple the number of variables on the 

left side should be equal to the number of the values in the tuple

Otherwise, error such as ValueError: too many values to unpack  

a, b, c = (10, 20, 30)

print(a)

print(b)

print(c)



Python Dictionaries
Session 8 , 4 Oct 22

Dr Ganapathi Raju

Professor and HOD of IT

GRIET

Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India



Features of Dictionary

• Dictionary is an unordered set of key and value pair

• Mutable i.e., value can be updated.

• Key must be unique and immutable, such as numbers, strings

• Values of a dictionary may be any data type

• key and value is known as item

• Container that contains data, enclosed within curly braces.



Creating Dictionary

• Dictionary enclosed within curly braces.

• The key and the value is separated by a colon (:),  pair is known as item

• Items are separated from each other by a comma (,)

• Different items are enclosed within a curly brace and this forms Dictionary



Creating dictionaries example

dict1 = {'Name': 'Ajay', 'Age':30, 'Profession’ : 'Programmer'}

print(dict1)

dict2 = {}

print(type(dict2))



Accessing dictionary Items

• Dictionaries value can be accessed by their keys

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession’: 'Programmer'}

print(dict1)

no = dict1['ID']
print(no)

age = dict1['Age']
print(age)

name = dict1['Name']
print(name)

Note: if the key is not available  returns Error

#des = dict1.['Description']

#print(des)



Accessing values using get()

• Dictionary elements also be accessed with get()

syn: get(“key”)

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession’: 'Programmer'}
print(dict1)

job2 = dict1.get('Profession')
print(job2)

des = dict1.get('Description')
print(des)
# Key



Dictionary Mutability Updating dictionary values

• Dictionary is mutable

- new items added or existing items can be changed

- If the key is already present, value gets updated,  else {key: value} pair is added to the dictionary

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession’: 'Programmer'}

# update value

dict1['Name'] = "Aditya"

dict1
# add item

dict1[‘Description'] = "Python Programming"

dict1



Updating dictionary values using update()

• update() : updates the dictionary with the elements from  another dictionary object  

or 

from an iterable of key/value pairs.

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}

dict2 ={"Area":"Machine Learning"}

dict1.update(dict2)

print (dict1)



Deleting values from dictionaries using del

• del statement is used for performing deletion operation

- Item can be deleted from a dictionary using the key

Syntax: del [key]

- Whole dictionary can be deleted using the del statement

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession’: 'Programmer'}

del dict1['ID']

dict1
del dict1

Note: For deleting all items of dictionary

Note: For deleting specific item using Key



Deleting values from dictionaries using pop

• pop:  removes as item with the provided key and returns the value

- remove an item in a dictionary

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession’: 'Programmer'}

dict1.pop ('ID')

dict1



Deleting values from dictionaries using clear

• clear(): Remove all items form the dictionary.

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}

dict1.clear()



Dictionary

• keys() : displays a list of all the keys in the dictionary

• values() : Return dictionary's values

• Items(): Return (key, value) in tuple pairs

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession’: 'Programmer’}

print (dict1.keys())

print (dict1.values())

print (dict1.items())



Iterating dictionary elements using keys()

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}

for k in dict1.keys():

print (k, dict1[k])



Iterating dictionary elements using items()

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}

for k,v in dict1.items():

print (k, v)



Iterating dictionary elements using values()

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}

values = dict1.values()

values

for value in dict1.values():

print(value)



Dictionary len(), copy()

• len() : Return number of items in the dictionary

• copy() : Return a copy of the dictionary.

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}

print (len(dict1))

dict1 = {'ID': '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}

dict2 = dict1.copy()

print(dict2)



fromkeys()

• fromkeys() :   creates a new dictionary from the given sequence of elements

dict.fromkeys(keys, value)



Dictionary all(), any()

• all(): returns True if all keys of the dictionary are true 

- or if the dictionary is empty

• any () return True if any key of the dictionary is true. 

- If the dictionary is empty, returns “False”.



Dr Ganapathi Raju

Professor and HOD of IT

GRIET

Dictionary 
Comprehensions



Comprehensions

• Comprehensions are constructs that 

allow sequences to be built from other sequences.

• Python supports three kinds of comprehensions

1. List comprehension

2. Dictionary comprehension

3. Set comprehension



Adv of List comprehension

• is an elegant way to define and create lists based on existing lists

• more compact and faster than normal functions and loops for creating list

Drawback

• avoid writing very long list comprehensions in one line 

to ensure that code is user-friendly



Dictionary Comprehension

• Dictionary comprehensions are used when the input is in the form of a dictionary 

or a Key : Value pair

• is a powerful concept and can be used to substitute for loops and lambda functions.

dict_variable = { key: value for ( key, value) in dictonary.items()}

dict1 = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}

double_dict1 = {k:v*2 for (k,v) in dict1.items()}

print(double_dict1)


