4

1‘{‘;&
To EXCEY

% rognantY,
® e AN
g S

Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

Learning Objectives.

Tuple , Dictionaries, Dictionary Comprehension

Session 8, 4 Oct 22

Dr N V Ganapathi Raju
Professor and HOD of IT
GRIET

© Replication or other unauthorized use of this material is prohibited

Python Tuple

 Atupleisasequence of values, Values can be any type, are indexed by integers

 immutable objects; cannot be changed
* Used to create write-protected data.

- are not dynamic, faster than lists
* Tupleis enclosed between parenthesis

e Tuple Vs List

- Tuple is like list

- Difference is, List have mutable objects whereas Tuple have immutable objects.

- List is enclosed between square bracket, tuple between parenthesis

© Replication or other unauthorized use of this material is prohibited

Creating Tuple \?

* Tuples are defined in parentheses () , values are separated by commas
* Contain values of different data types.
 Can be an empty
* Asingle valued tuple,
- must be a comma at the end of the value
* (Can also be nested.

* If a Tuple does not enclose with parenthesis, still it will be considered as tuple

© Replication or other unauthorized use of this material is prohibited

Creating Tuple example \?

t1=(10,20.50,"python",'p',True)
t2= 10,20.50,"python",'p',True
t3 = (10,)

t4= ()

t5 = (10,20.50,"python")

te= (t5,'p',True)

t7 = tuple()

© Replication or other unauthorized use of this material is prohibited

Accessing Tuple values \?

* Use square bracket [], to slice along the index or indices and access the values of a tuple
* Tuple elements can be accessed like String and List
- Forward Indexing , indexing start with 0 to n-1 (Reading from Left to Right)

- Backward Indexing, indexing start with -1 to —n (Reading from Right to Left)

© Replication or other unauthorized use of this material is prohibited

Accessing Tuple elements example

t1=(10,20.50,"python",'p',True)

t1[0] s

t1[4] are

t1[-1] \

t1[-5] IndexError: tuple index out of range

© Replication or other unauthorized use of this material is prohibited

Tuple Slicing \?

* Slicing is used to select range of values from tuple object

syn: [start_index : end_index : step].

- start_index is the beginning index of the slice; default value is 0.
- end_index is the end index of the slice; default value is the len(sequence).

- step is the amount by which the index increases, the default value is 1.

© Replication or other unauthorized use of this material is prohibited

Tuple slicing example \?

tl = ("python","tuples”,"are","immutable","write","protected")
print(t1[1:4])

print(t1[:4])

print(t1[:])

print(t1[::2])

print(tl[::-1])

© Replication or other unauthorized use of this material is prohibited

Tuple basic operations \?

« Membership operators

- in returns True if an item is present in sequence else False

- not in returns True if an item is not present in sequence else False
* Addition Tuple

- Tuple can be added by using the concatenation operator(+) to join two tuples.
* Replicating Tuple:

- Replicating can be performed by using '*' operator by a specific number of time.

© Replication or other unauthorized use of this material is prohibited

Tuple basic operations example \?

t1 =(10,20.50,"python",'p',True)
'p'intl

20.50 notintl

tl = ("python","tuples","are")

t2 = ("and","immutable","write","protected")
t3=1t1 +1t2

print(t3)

t4 = ("Immutable " * 3)
print(t4)

© Replication or other unauthorized use of this material is prohibited

Tuple basic operations \?

 Updating elements in a List:

- Elements of the Tuple cannot be updated. since Tuples are immutable.

* Deleting elements from Tuple:
- Deleting individual element from a tuple is not supported.

- Whole of the tuple can be deleted using the del statement
t1=(10,20,'rahul',40.6,'z")

print (t1)
del (t1)

© Replication or other unauthorized use of this material is prohibited

Index and Count \?

* index() : searches an element in a tuple and returns its index.
- returns its position
- if the same element is present more than once, the first position is returneda

- If no element is found, a ValueError exception is raised indicating the element is not found.

t2=(10,'savik',40.6,'z')
t2=(10,'savik',40.6,10,'z')
print(t2.index(40.6))

print(t2.count(10))
print(t2.index('a’))
raises ValueError: tuple.index(x): x not in tuple

© Replication or other unauthorized use of this material is prohibited

Tuple operations \?

 min(), max() and len()

built-in function to get the maximum value, minimum values and the length of a sequence.

t1=(100, 255.55, True)
print(len(t1))
print(min(t1))
print(max(t1))

print()

© Replication or other unauthorized use of this material is prohibited

unpacking \?

* unpack : tuple into variables.

- when unpacking a tuple the number of variables on the
left side should be equal to the number of the values in the tuple

Otherwise, error such as ValueError: too many values to unpack

a, b, ¢ = (10, 20, 30)
print(a)
print(b)

print(c)

© Replication or other unauthorized use of this material is prohibited

4

‘-‘sr;&“'" a,-;h; :\"‘/i;@

2 y.n.; E,\'C‘a‘\'

Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

Python Dictionaries

Session 8, 4 Oct 22

Dr Ganapathi Raju
Professor and HOD of IT
GRIET

© Replication or other unauthorized use of this material is prohibited

Features of Dictionary \?

* Dictionary is an unordered set of key and value pair
 Mutablei.e., value can be updated.

* Key must be unique and immutable, such as numbers, strings
* Values of a dictionary may be any data type

* key and value is known as item

* Container that contains data, enclosed within curly braces.

© Replication or other unauthorized use of this material is prohibited

Creating Dictionary \‘?

Dictionary enclosed within curly braces.

The key and the value is separated by a colon (:), pairis known as item

Items are separated from each other by a comma (,)

Different items are enclosed within a curly brace and this forms Dictionary

© Replication or other unauthorized use of this material is prohibited

Creating dictionaries example \?

dictl = {'Name': 'Ajay’, 'Age':30, 'Profession’ : 'Programmer'}

print(dictl)

dict2 = {}
print(type(dict2))

© Replication or other unauthorized use of this material is prohibited

Accessing dictionary Items \?

* Dictionaries value can be accessed by their keys

dictl = {"'ID": '100', 'Name"': 'Shashank ', 'Age':30, 'Profession’: 'Programmer'}
print(dictl)

no = dict1['ID']

_ Note: if the key is not available returns Error
print(no)

age = dict1['Age']
print(age)

#des = dictl.['Description’]

name = dict1['Name'] #print(des)
print(name)

© Replication or other unauthorized use of this material is prohibited

Accessing values using get() \?

* Dictionary elements also be accessed with get()

syn: get(“key”)

dictl = {"'ID": '100', 'Name': 'Shashank ', 'Age':30, 'Profession’: 'Programmer'}
print(dictl)

job2 = dictl.get('Profession')
print(job2)

des = dictl.get('Description’)
print(des)
Key

© Replication or other unauthorized use of this material is prohibited

Dictiona ry Muta bility Updating dictionary values \?

e Dictionary is mutable
- new items added or existing items can be changed

- If the key is already present, value gets updated, else {key: value} pair is added to the dictionary

dictl = {'ID": '100', 'Name': 'Shashank ', 'Age':30, 'Profession’: 'Programmer'}

update value
dictl['Name'] = "Aditya"

dictl
add item

dictl[‘Description'] = "Python Programming"
dictl

© Replication or other unauthorized use of this material is prohibited

Updating dictionary values using update() \?

* update() : updates the dictionary with the elements from another dictionary object
or

from an iterable of key/value pairs.

dictl = {'ID": '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}
dict2 ={"Area":"Machine Learning"}

dictl.update(dict2)

print (dict1)

© Replication or other unauthorized use of this material is prohibited

Deleting values from dictionaries using del \?

* del statement is used for performing deletion operation
- ltem can be deleted from a dictionary using the key

Syntax: del [key]

- Whole dictionary can be deleted using the del statement

Note: For deleting specific item using Key

dictl = {'ID": '100', 'Name": 'Shashank ', 'Age':30, 'Profession’: 'Programmerfijote: For deleting all items of dictionary

del dict1['ID'] del dict1
dictl

© Replication or other unauthorized use of this material is prohibited

Deleting values from dictionaries using pop \?

* pop: removes as item with the provided key and returns the value

- remove an item in a dictionary

dictl = {"'ID": '100', 'Name': 'Shashank ', 'Age':30, 'Profession’: 'Programmer'}
dictl.pop ('ID')

dictl

© Replication or other unauthorized use of this material is prohibited

Deleting values from dictionaries using clear

e clear(): Remove all items form the dictionary.

dictl = {"'ID": '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}

dictl.clear()

© Replication or other unauthorized use of this material is prohibited

Dictionary \?

* keys() : displays a list of all the keys in the dictionary
* values() : Return dictionary's values

e Items(): Return (key, value) in tuple pairs

dictl = {"ID": '100', 'Name"': 'Shashank ', 'Age':30, 'Profession’: 'Programmer’}
print (dict1.keys())
print (dictl.values())

print (dictl.items())

© Replication or other unauthorized use of this material is prohibited

Iterating dictionary elements using keys()

dictl = {'ID": '100', 'Name": 'Shashank ', 'Age':30, 'Profession':'Programmer'}
for kin dictl.keys():

print (k, dict1[k])

© Replication or other unauthorized use of this material is prohibited

Iterating dictionary elements using items()

dictl ={'ID": '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}
for k,v in dictl.items():

print (k, v)

© Replication or other unauthorized use of this material is prohibited

Iterating dictionary elements using values() \?

dictl ={'ID": '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}
values = dictl.values()

values

for value in dictl.values():

print(value)

© Replication or other unauthorized use of this material is prohibited

Dictionary len(), copy() \?

* len() : Return number of items in the dictionary

* copy() : Return a copy of the dictionary.

dictl = {'ID": '100', 'Name": 'Shashank ', 'Age':30, 'Profession':'Programmer'}

print (len(dict1))
dictl = {"'ID": '100', 'Name': 'Shashank ', 'Age':30, 'Profession':'Programmer'}
dict2 = dictl.copy()

print(dict2)

© Replication or other unauthorized use of this material is prohibited

fromkeys() \?

 fromkeys() : creates a new dictionary from the given sequence of elements

dict.fromkeys(keys, value)

© Replication or other unauthorized use of this material is prohibited

Dictionary all(), any() \?

e all(): returns True if all keys of the dictionary are true
- or if the dictionary is empty
e any () return True if any key of the dictionary is true.

- If the dictionary is empty, returns “False”.

© Replication or other unauthorized use of this material is prohibited

Dictionary
Comprehensions

Dr Ganapathi Raju
Professor and HOD of IT

GRIET
© Replication or other unauthorized use of this material is prohibited

Comprehensions \?

e Comprehensions are constructs that

allow sequences to be built from other sequences.

* Python supports three kinds of comprehensions

1. List comprehension
2. Dictionary comprehension

3. Set comprehension

© Replication or other unauthorized use of this material is prohibited

Adv of List comprehension \‘?

* is an elegant way to define and create lists based on existing lists

* more compact and faster than normal functions and loops for creating list

Drawback

e avoid writing very long list comprehensions in one line

to ensure that code is user-friendly

© Replication or other unauthorized use of this material is prohibited

Dictionary Comprehension \?

* Dictionary comprehensions are used when the input is in the form of a dictionary

or a Key : Value pair

dict_variable = { key: value for (key, value) in dictonary.items()}

* is a powerful concept and can be used to substitute for loops and lambda functions.

dictl={'a":1,'b": 2,'c": 3,'d": 4, 'e": 5}
double_dictl = {k:v*2 for (k,v) in dictl.items()}

print(double_dictl)

© Replication or other unauthorized use of this material is prohibited

