
Jawaharlal Nehru Technological University Hyderabad

Kukatpally, Hyderabad - 500 085, Telangana, India

Learning Objectives:

Database operations on SQLite
– Session 9 , 20 May 2023

Dr N V Ganapathi Raju
Professor and HOD of IT

Gokaraju Rangaraju Institute of Eng and Tech

SQLite database

▪ SQLite is the most widely deployed SQL database engine in the world.

▪ SQLite does not require a separate server process or system to operate (serverless).

▪ SQLite comes with zero-configuration, which means no setup or administration needed.

▪ A complete SQLite database is stored in a single cross-platform disk file.

▪ SQLite is very small and light weight, less than 400KiB fully configured or less than 250KiB with

optional features omitted.

▪ SQLite transactions are fully ACID-compliant, allowing safe access from multiple processes or

threads.

▪ Supports in all O.S, written in ANSI-C and provides simple and easy-to-use API.

How to get start with databases

▪ Databases require more defined structure than Python lists or dictionaries.

▪ When we create a database table, we must tell the database in advance the names of

each of the columns in the table and the type of data which we are planning to store in

each column.

▪ When the database software knows the type of data in each column, it can choose the

most efficient way to store and look up the data based on the type of data.

How to work with SQLite
▪ SQLite database is in-built in Python using sqlite3 module

▪ When we connect to an SQLite database file that does not exist, SQLite automatically creates the

new database for us.

▪ To create a database, first, we must create a Connection object that represents the database using

the connect() function of the sqlite3 module.

import sqlite3

conn = sqlite3.connect('emp.db')

print ("Opened database successfully")

Steps to work with SQLite
Note: We must create a folder first,

before we execute the program. or

▪ we can place the database file a folder of our choice.

▪ The connect() function opens a connection to an SQLite database. It returns a Connection

object that represents the database. By using the Connection object, you can perform various

database operations.

import sqlite3
conn = sqlite3.connect('emp.db')
print ("Opened database successfully")

Steps to work with SQLite

Note:

▪ If we skip the folder path C:\Users\PERSONAL\Desktop\SQLite_db, the program will create the

database file in the current working directory (CWD).

▪ If we pass the file name as :memory: to the connect() function of the sqlite3 module, it will

create a new database that resides in the memory (RAM) instead of a database file on disk.

import sqlite3

conn = sqlite3.connect(':memory:')

print ("Opened database successfully")

Creating Tables in SQLite

▪ To create a new table in an SQLite database from a Python program, you use the following steps:

▪ First, create a Connection object using the connect() method of the sqlite3 module.

▪ Second, create a Cursor object by calling the cursor() method of the Connection

object.

▪ Third, pass the CREATE TABLE statement to the execute() method of the Cursor

object and execute this method.

Database cursors

• A cursor is like a file handle that we can use to perform operations on the data stored in the database.

• Calling cursor() is very similar conceptually to calling open() when dealing with text files.

• Once we have the cursor, we can begin to execute commands on the contents of the database using the

execute() method.

Creating Tables in SQLite

import sqlite3

conn = sqlite3.connect('emp.db')
print ("Opened database successfully")

conn.execute('''CREATE TABLE COMPANY
(ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR(50),
SALARY REAL);''')

print ("Table created successfully")

conn.close()

CURD operations using SQLite

▪ CURD stands for CREATE, UPDATE, RETRIEVE, DELETE operations.

▪ Create – Insert operation

▪ Update- Update operation

▪ Retrieve – Select operation

▪ Delete – Delete operation

Insert data into SQLite

import sqlite3

conn = sqlite3.connect('emp.db')
print ("Opened database successfully")

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)VALUES (1, 'Paul', 32, 'California', 20000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) VALUES (2, 'Allen', 25, 'Texas', 15000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) VALUES (3, 'Teddy', 23, 'Norway', 20000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00)");

conn.commit()
print ("Records created successfully")
conn.close()

Opened database successfully

Records created successfully

Select data from SQLite

import sqlite3

conn = sqlite3.connect('emp.db')
print ("Opened database successfully")

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")
for row in cursor:

print ("ID = ", row[0])
print ("NAME = ", row[1])
print ("ADDRESS = ", row[2])
print ("SALARY = ", row[3], "\n")

print ("Operation done successfully")
conn.close()

Opened database successfully
ID = 1
NAME = Paul
ADDRESS = California
SALARY = 25000.0

ID = 2
NAME = Allen
ADDRESS = Texas
SALARY = 15000.0
..
..

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000.0

Operation done successfully

Cursor methods

▪ cursor.fetchall() fetches all the rows of a query result.

▪ It returns all the rows as a list of tuples.

▪ An empty list is returned if there is no record to fetch.

▪ cursor.fetchmany(size) returns the number of rows specified by size argument.

▪ When called repeatedly this method fetches the next set of rows of a query result and

returns a list of tuples.

▪ If no more rows are available, it returns an empty list.

▪ cursor.fetchone() method returns a single record or None if no more rows are available.

Select data from SQLite

import sqlite3 as lite

con = lite.connect('emp.db')

with con:

cur = con.cursor()
cur.execute("SELECT * FROM COMPANY")

rows = cur.fetchall()

for row in rows:
print (row)

Retrieving one record at a time

import sqlite3 as lite

con = lite.connect('emp.db')

with con:
cur = con.cursor()
cur.execute("SELECT * FROM COMPANY")

while True:
row = cur.fetchone()

if row == None:
break

print (row[0], row[1], row[2])

Update SQLite data

import sqlite3

conn = sqlite3.connect('emp.db')

conn.execute("UPDATE COMPANY set SALARY = 25000.00 where ID = 1")
conn.commit()
print ("Total number of rows updated :", conn.total_changes)

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")
for row in cursor:

print ("ID = ", row[0])
print ("NAME = ", row[1])
print ("ADDRESS = ", row[2])
print ("SALARY = ", row[3], "\n")

conn.close()

Deleting data from SQLite

import sqlite3

conn = sqlite3.connect('emp.db')
print ("Opened database successfully")

conn.execute("DELETE from COMPANY where ID = 2;")
conn.commit()
print ("Total number of rows deleted :", conn.total_changes)

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")
for row in cursor:

print ("ID = ", row[0])
print ("NAME = ", row[1])
print ("ADDRESS = ", row[2])
print ("SALARY = ", row[3], "\n")

print ("Operation done successfully")
conn.close()

Opened database successfully
Total number of rows deleted : 1
ID = 1
NAME = Paul
ADDRESS = California
SALARY = 25000.0

ID = 3
NAME = Teddy
ADDRESS = Norway
SALARY = 20000.0

ID = 4
NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000.0

Operation done successfully

executescript() - executing multiple SQL statements

▪ This is a nonstandard convenience method for executing multiple SQL statements at once. It issues a

COMMIT statement first, then executes the SQL script it gets as a parameter.

import sqlite3

con = sqlite3.connect(":memory:")

cur = con.cursor()

cur.executescript("""

create table samples(id,value);

insert into samples(id, value) values ('123','abcdef');

""")

cur.execute("SELECT * from samples")

print (cur.fetchone())

Parameterized queries

▪ A parameterized query is a query in which placeholders used for parameters and the parameter values

supplied at execution time.

▪ That means parameterized query gets compiled only once.

▪ There are the main 4 reasons to use

▪ Improves Speed: If you want to execute SQL statement/query many times, it usually reduces execution

time

▪ Compile Once: The main advantage of using a parameterized query is that parameterized query compiled

only once

▪ Same Operation with Different Data: if you want to execute the same query multiple times with different

data.

▪ Preventing SQL injection attacks.

import sqlite3
conn = sqlite3.connect('LanguageDB')
cur = conn.cursor()
cur.execute('DROP TABLE IF EXISTS languages')
cur.execute('CREATE TABLE languages (subject TEXT, marks INTEGER)')

cur.execute('INSERT INTO languages (subject, marks) VALUES (?, ?)', ('C', 100))
cur.execute('INSERT INTO languages (subject, marks) VALUES (?, ?)', ('Java', 200))
cur.execute('INSERT INTO languages (subject, marks) VALUES (?, ?)', ('Python', 300))
conn.commit()

print('Languages:')
cur.execute('SELECT subject, marks FROM languages')
for row in cur:

print(row)
cur.close()

Parameterized queries

Languages:
('C', 100)
('Java', 200)
('Python', 300)

Consider database as emp.db

emp10.db

(1, 'Paul', 32, 'California', 20000.0)

(2, 'Allen', 25, 'Texas', 15000.0)

(3, 'Teddy', 23, 'Norway', 20000.0)

(4, 'Mark', 25, 'Rich-Mond ', 65000.0)

select with where clause

import sqlite3 as lite

con = lite.connect('emp10.db')

with con:

cur = con.cursor()
cur.execute("SELECT * FROM COMPANY where ID=1")

rows = cur.fetchall()

for row in rows:
print (row)

(1, 'Paul', 32, 'California', 20000.0)

select with where clause

import sqlite3 as lite

con = lite.connect('emp0.db')

with con:

cur = con.cursor()
cur.execute("SELECT * FROM COMPANY where NAME='Paul'")

rows = cur.fetchall()

for row in rows:
print (row)

(1, 'Paul', 32, 'California', 25000.0)

select with where clause

import sqlite3 as lite

con = lite.connect('emp10.db')

with con:

cur = con.cursor()
cur.execute("SELECT * FROM COMPANY where SALARY >=30000")

rows = cur.fetchall()

for row in rows:
print (row)

(4, 'Mark', 25, 'Rich-Mond ', 65000.0)

select with order by clause

import sqlite3 as lite

con = lite.connect('emp10.db')

with con:

cur = con.cursor()
cur.execute("SELECT * FROM COMPANY ORDER BY SALARY")

rows = cur.fetchall()

for row in rows:
print (row)

(2, 'Allen', 25, 'Texas', 15000.0)
(1, 'Paul', 32, 'California', 20000.0)
(3, 'Teddy', 23, 'Norway', 20000.0)
(4, 'Mark', 25, 'Rich-Mond ', 65000.0)

select with where clause (like operator)

import sqlite3 as lite

con = lite.connect('emp10.db')

with con:

cur = con.cursor()
cur.execute("SELECT * FROM COMPANY WHERE NAME LIKE 'a%'")

rows = cur.fetchall()

for row in rows:
print (row)

(2, 'Allen', 25, 'Texas', 15000.0)

select with where clause (max())

import sqlite3 as lite

con = lite.connect('emp10.db')

with con:

cur = con.cursor()
cur.execute("SELECT MAX(salary) FROM COMPANY")

rows = cur.fetchall()

for row in rows:
print (row)

(65000.0,)

	Default Section
	Slide 1
	Slide 2: SQLite database
	Slide 3: How to get start with databases
	Slide 4: How to work with SQLite
	Slide 5: Steps to work with SQLite
	Slide 6: Steps to work with SQLite
	Slide 7: Creating Tables in SQLite
	Slide 8: Database cursors
	Slide 9: Creating Tables in SQLite
	Slide 10: CURD operations using SQLite
	Slide 11: Insert data into SQLite
	Slide 12: Select data from SQLite
	Slide 13: Cursor methods
	Slide 14: Select data from SQLite
	Slide 15: Retrieving one record at a time
	Slide 16: Update SQLite data
	Slide 17: Deleting data from SQLite
	Slide 18: executescript() - executing multiple SQL statements
	Slide 19: Parameterized queries
	Slide 20: Parameterized queries
	Slide 21: Consider database as emp.db
	Slide 22: select with where clause
	Slide 23: select with where clause
	Slide 24: select with where clause
	Slide 25: select with order by clause
	Slide 26: select with where clause (like operator)
	Slide 27: select with where clause (max())

